Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Surgery ; 175(5): 1305-1311, 2024 May.
Article in English | MEDLINE | ID: mdl-38342728

ABSTRACT

BACKGROUND: Anastomotic leakage is one of the most severe adverse events of minimally invasive esophagectomy for esophageal cancer. Early postoperative endoscopy is considered to be the most objective means to diagnose anastomotic leakage, but its safety is questioned by clinicians. This study aimed to evaluate the safety and effectiveness of early postoperative endoscopy in predicting anastomotic leakage. METHODS: Patients who underwent minimally invasive esophagectomy (from January 2017 to June 2021) in our center were identified and divided into early postoperative endoscopy and control groups according to whether they underwent early postoperative endoscopy within 72 hours after surgery. Propensity score matching was used to balance baseline characteristics. The incidence of postoperative adverse events was compared between the 2 groups, risk variables for anastomotic leakage were identified using logistic regression, and abnormal endoscopic findings related to anastomotic leakage occurrence were explored. RESULTS: A total of 436 patients were enrolled, of whom 134 underwent early postoperative endoscopy. One hundred and thirty-two pairs were matched by propensity score matching, and baseline characteristics were well-balanced. Both before and after propensity score matching, early postoperative endoscopy did not increase the incidence of postoperative adverse events (chyle leak, hypoproteinemia, pneumonia, etc) and in-hospital mortality. Notably, the incidence of anastomotic leakage (9.8% vs 22.7%) and the length of mean postoperative hospital stay (17.6 vs 20.9 days) was significantly decreased in the early postoperative endoscopy group. Finally, based on the findings under early postoperative endoscopy, we found that gastric graft ischemia is related to a higher incidence of anastomotic leakage (P = .023). CONCLUSION: Early postoperative endoscopy does not increase postoperative adverse events after minimally invasive esophagectomy and may guide early prediction and intervention strategies for anastomotic leakage in patients undergoing minimally invasive esophagectomy.


Subject(s)
Anastomotic Leak , Esophageal Neoplasms , Humans , Anastomotic Leak/diagnosis , Anastomotic Leak/epidemiology , Anastomotic Leak/etiology , Retrospective Studies , Esophagectomy/adverse effects , Endoscopy, Gastrointestinal/adverse effects , Postoperative Complications/diagnosis , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Minimally Invasive Surgical Procedures/adverse effects
2.
Small ; 20(16): e2308638, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38018295

ABSTRACT

Immunotherapy is a promising cancer therapeutic strategy. However, the "cold" tumor immune microenvironment (TIME), characterized by insufficient immune cell infiltration and immunosuppressive status, limits the efficacy of immunotherapy. Tumor vascular abnormalities due to defective pericyte coverage are gradually recognized as a profound determinant in "cold" TIME establishment by hindering immune cell trafficking. Recently, several vascular normalization strategies by improving pericyte coverage have been reported, whereas have unsatisfactory efficacy and high rates of resistance. Herein, a combinatorial strategy to induce tumor vasculature-targeted pericyte recruitment and zinc ion-mediated immune activation with a platelet-derived growth factor B (PDGFB)-loaded, cyclo (Arg-Gly-Asp-D-Phe-Lys)-modified zeolitic imidazolate framework 8 (PDGFB@ZIF8-RGD) nanoplatform is proposed. PDGFB@ZIF8-RGD effectively induced tumor vascular normalization, which facilitated trafficking and infiltration of immune effector cells, including natural killer (NK) cells, M1-like macrophages and CD8+ T cells, into tumor microenvironment. Simultaneously, vascular normalization promoted the accumulation of zinc ions inside tumors to trigger effector cell immune activation and effector molecule production. The synergy between these two effects endowed PDGFB@ZIF8-RGD with superior capabilities in reprogramming the "cold" TIME to a "hot" TIME, thereby initiating robust antitumor immunity and suppressing tumor growth. This combinatorial strategy for improving immune effector cell infiltration and activation is a promising paradigm for solid tumor immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Proto-Oncogene Proteins c-sis/pharmacology , Proto-Oncogene Proteins c-sis/therapeutic use , Neoplasms/therapy , Immunotherapy , Oligopeptides/therapeutic use , Zinc/pharmacology , Tumor Microenvironment
3.
Front Oncol ; 13: 1170923, 2023.
Article in English | MEDLINE | ID: mdl-37434986

ABSTRACT

Background: Advanced hepatocellular carcinoma (HCC) is characterized as symptomatic tumors [performance status (PS) score of 1-2], vascular invasion and extrahepatic spread, but patients with PS1 alone may be eliminated from this stage. Although liver resection is used for liver-confined HCC, its role in patients with PS1 alone remains controversial. Therefore, we aimed to explore its application in such patients and identify potential candidates. Methods: Eligible liver-confined HCC patients undergoing liver resection were retrospectively screened in 15 Chinese tertiary hospitals, with limited tumor burden, liver function and PS scores. Cox-regression survival analysis was used to investigate the prognostic factors and develop a risk-scoring system, according to which patients were substratified using fitting curves and the predictive values of PS were explored in each stratification. Results: From January 2010 to October 2021, 1535 consecutive patients were selected. In the whole cohort, PS, AFP, tumor size and albumin were correlated with survival (adjusted P<0.05), based on which risk scores of every patient were calculated and ranged from 0 to 18. Fitting curve analysis demonstrated that the prognostic abilities of PS varied with risk scores and that the patients should be divided into three risk stratifications. Importantly, in the low-risk stratification, PS lost its prognostic value, and patients with PS1 alone achieved a satisfactory 5-year survival rate of 78.0%, which was comparable with that PS0 patients (84.6%). Conclusion: Selected patients with PS1 alone and an ideal baseline condition may benefit from liver resection and may migrate forward to BCLC stage A.

4.
Int Immunopharmacol ; 117: 109942, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36889194

ABSTRACT

BACKGROUND: Heat stress is fundamental to esophageal carcinoma (ESCA) oncogenesis and progression. Heat stress damages epithelial structure, causing aberrant 'cell death-repair' patterns of esophagus cells and thereby driving tumor occurrence and progression. However, due to the distinctive functions and crosstalk of regulatory cell death (RCD) patterns, the specific cell deaths in ESCA malignancy are still unclear. METHODS: We analyzed the key regulatory cell death genes involved in heat stress and ESCA progression by using The Cancer Genome Atlas-ESCA database. The least absolute shrinkage and selection operator (LASSO) algorithm was used to filter the key genes. The one-class logistic regression (OCLR) and quanTIseq methods were used to evaluate the cell stemness and immune cell infiltration in ESCA samples. Cell counting kit-8 (CCK8) and wound healing assays were performed to assess the proliferation and migration of cells. RESULTS: We found that cuproptosis may be a potential risk factor of heat stress-related ESCA. Two interrelated genes, HSPD1 and PDHX, were associated with heat stress and cuproptosis and played a role in cell survival, proliferation, migration, metabolism and immunosuppression. CONCLUSIONS: We found that cuproptosis promoted ESCA related to heat stress, offering a new therapeutic opportunity to treat this malignant disorder.


Subject(s)
Apoptosis , Carcinoma , Esophageal Neoplasms , Humans , Algorithms , Chaperonin 60 , Esophageal Neoplasms/genetics , Immunosuppression Therapy , Mitochondrial Proteins , Pyruvate Dehydrogenase Complex , Copper
5.
Adv Sci (Weinh) ; 10(4): e2204808, 2023 02.
Article in English | MEDLINE | ID: mdl-36479819

ABSTRACT

Lactate, a characteristic metabolite of the tumor microenvironment (TME), drives immunosuppression and promotes tumor progression. Material-engineered strategies for intratumoral lactate modulations demonstrate their promise for tumor immunotherapy. However, understanding of the inherent interconnections of material-enabled lactate regulation, metabolism, and immunity in the TME is scarce. To address this issue, urchin-like catalysts of the encapsulated Gd-doped CeO2 , syrosingopine, and lactate oxidase are used in ZIF-8 (USL, where U, S, and L represent the urchin-like Gd-doped CeO2 @ZIF-8, syrosingopine, and lactate oxidase, respectively) and orthotopic tumor models. The instructive relationships of intratumoral lactate depletion, metabolic reprogramming, and immune activation for catalytic immunotherapy of tumors is illustrated. The catalysts efficiently oxidize intratumoral lactate and significantly promote tumor cell apoptosis by in situ-generated ·OH, thereby reducing glucose supply and inducing mitochondrial damage via lactate depletion, thus reprogramming glycometabolism. Subsequently, such catalytic metabolic reprogramming evokes both local and systemic antitumor immunity by activating M1-polarizaed macrophages and CD8+ T cells, leading to potent antitumor immunity. This study provides valuable mechanistic insights into material-interfered tumor therapy through intratumoral lactate depletion and consequential connection with metabolic reprogramming and immunity remodeling, which is thought to enhance the efficacy of immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Lactic Acid , Neoplasms/therapy , Immunotherapy , Immunosuppression Therapy , Tumor Microenvironment
6.
Vet Med Sci ; 9(1): 181-190, 2023 01.
Article in English | MEDLINE | ID: mdl-36480456

ABSTRACT

OBJECTIVES: The response of mammals to cold environment is a complex physiological activity, and its underlying mechanism must be analyzed from multiple perspectives. Skeletal muscle is an important thermogenic tissue that maintains body temperature in mammals. We dissected the molecular mechanism of pig skeletal muscle response to a cold environment by performing comparative transcriptome analysis in the Enshi black pig. METHODS: Three pigs were subjected to acute cold stress (3 days), three pigs were subjected to cold acclimation (58 days), and three pigs were used as controls. RNA-seq was used to screen the differentially expressed genes (DEGs) of skeletal muscle. RESULTS: Using RNA-seq methods, we identified 1241 DEGs within the acute cold stress group and 1886 DEGs within the cold acclimation group. Prolonged cold exposure induced more gene expression changes. A total of 540 key cold-responsive DEGs were found, and their trends were consistent within the acute cold stress group and cold acclimation group. Gene expression pattern analysis showed that there were significant differences between the low-temperature treatment groups and the control group, and there were also differences between individuals after long-term low-temperature treatment. Analysis of DEGs revealed that 134 pathways were significantly enriched in the cold adaptation group, 98 pathways were significantly enriched in the acute cold stress group, and 71 pathways were shared between the two groups. The 71 shared pathways were mainly related to lipid, amino acid, and carbohydrate metabolism; signal transduction; endocrine, immune, and nervous system; cardiovascular disease; infectious diseases caused by bacteria or viruses; and neurodegenerative disease. CONCLUSIONS: In conclusion, this study provides insights into the molecular mechanism of porcine skeletal muscle response under low-temperature environment. The data may assist further research on the mechanism of pig response to cold exposure.


Subject(s)
Neurodegenerative Diseases , Swine Diseases , Swine , Animals , Transcriptome , Neurodegenerative Diseases/veterinary , Temperature , Gene Expression Profiling/veterinary , Gene Expression Profiling/methods , Muscle, Skeletal , Mammals/genetics
7.
Transl Lung Cancer Res ; 11(10): 2079-2093, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36386454

ABSTRACT

Background: Cuproptosis or copper-dependent cell death is a newly identified non-apoptotic cell death pathway which plays a critical role in the development of multiple cancers. Long non-coding RNAs (lncRNAs) are increasingly recognized as crucial regulators of programmed cell death and lung adenocarcinoma (LUAD) development, and a comprehensive understanding of cuproptosis-related lncRNAs may improve prognosis prediction of LUAD. However, few studies have explored the association of cuproptosis-related lncRNAs with the prognosis of LUAD. Methods: The RNA sequencing data and corresponding clinical information of patients were extracted from The Cancer Genome Atlas (TCGA) database. Five hundred LUAD patients were randomly divided into a training (n=250) and a testing cohort (n=250). Pearson correlations were performed to identify cuproptosis-related lncRNAs, and univariate Cox regression was performed to screen prognostic lncRNAs. A cuproptosis-related lncRNAs prognostic signature (CLPS) was constructed by the least absolute shrinkage and selection operator Cox regression. Kaplan-Meier analysis, receiver operating characteristic curves, and multivariate Cox regression were performed to verify the prognostic performance of CLPS. Additionally, immune cell infiltration was estimated using the single-sample gene-set enrichment analysis. pRRophetic algorithm and Tumor Immune Dysfunction and Exclusion algorithm were used to assess the immunotherapy and chemotherapy response, respectively. Results: CLPS was established based on 61 cuproptosis-related prognostic lncRNAs and exhibited a satisfactory performance predicting LUAD patients' survival (area under the curve at 1, 3, 5 years was 0.784, 0.749, 0.775, respectively). multivariate Cox analysis confirmed the independent prognostic effect of CLPS (hazard ratio: 1.128; 95% confidence interval: 1.071-1.189; P<0.001), and a nomogram containing it exhibited robust validity in prognostic prediction. We further demonstrated a higher CLPS-risk score was associated with lower levels of signatures including immune cell infiltration, immune activation, and immune checkpoints. Conclusions: The CLPS serves as an effective predictor for the prognosis and therapeutic responses of LUAD patients. Our findings provide promising novel biomarkers and therapeutic targets for LUAD.

8.
Front Genet ; 13: 996950, 2022.
Article in English | MEDLINE | ID: mdl-36246663

ABSTRACT

Background: The non-negligible role of epigenetic modifications in cancer development and tumor microenvironment (TME) has been demonstrated in recent studies. Nonetheless, the potential regulatory role of N7-methylguanosine (m7G) modification in shaping and impacting the TME remains unclear. Methods: A comprehensive analysis was performed to explore the m7G modification patterns based on 24 potential m7G regulators in 817 lung adenocarcinoma (LUAD) patients, and the TME landscape in distinct m7G modification patterns were evaluated. The m7G score was established based on principal component analysis (PCA) to quantify m7G modification patterns and evaluate the TME cell infiltrating characteristics of individual tumors. Further, correlation analyses of m7Gscore with response to chemotherapy and immunotherapy were performed. Results: We identified three distinct m7G modification patterns with the biological pathway enrichment and TME cell infiltrating characteristics corresponded to immune-desert, immune-inflamed and immune-excluded phenotype, respectively. We further demonstrated the m7Gscore could predict the TME infiltrating characteristics, tumor mutation burden (TMB), response to immunotherapy and chemotherapy, as well as prognosis of individual tumors. High m7Gscore was associated with increased component of immune cell infiltration, low TMB and survival advantage, while low m7Gscore was linked to decreased immune cell infiltration and increased TMB. Additionally, patients with lower m7Gscore demonstrated significant therapeutic advantages. Conclusion: This study demonstrated the regulatory mechanisms of m7G modification on TME formation and regulation of lung adenocarcinoma. Identification of individual tumor m7G modification patterns will contribute to the understanding of TME characterization and guiding more effective immunotherapy strategies.

9.
PLoS One ; 17(9): e0274184, 2022.
Article in English | MEDLINE | ID: mdl-36155652

ABSTRACT

The increased sensitivity of pigs to ambient temperature is due to today's intensive farming. Frequent climate disasters increase the pressure on healthy pig farming. Min pigs are an indigenous pig breed in China with desirable cold resistance characteristics, and hence are ideal for obtaining cold-resistant pig breeds. Therefore, it is important to discover the molecular mechanisms that are activated in response to cold stress in the Min pig. Here, we conducted a transcriptomic analysis of the skeletal muscle of Min pigs under chronic low-temperature acclimation (group A) and acute short cold stress (group B). Cold exposure caused more genes to be upregulated. Totals of 125 and 96 differentially expressed genes (DEGs) were generated from groups A and B. Sixteen common upregulated DEGs were screened; these were concentrated in oxidative stress (SRXN1, MAFF), immune and inflammatory responses (ITPKC, AREG, MMP25, FOSL1), the nervous system (RETREG1, GADD45A, RCAN1), lipid metabolism (LRP11, LIPG, ITGA5, AMPD2), solute transport (SLC19A2, SLC28A1, SLCO4A1), and fertility (HBEGF). There were 102 and 73 genes that were specifically differentially expressed in groups A and B, respectively. The altered mRNAs were enriched in immune, endocrine, and cancer pathways. There were 186 and 91 differentially expressed lncRNAs generated from groups A and B. Analysis of the target genes suggested that they may be involved in regulating the MAPK signaling pathway for resistance to cold. The results of this study provide a comprehensive overview of cold exposure-induced transcriptional patterns in skeletal muscle of the Min pig. These results can guide future molecular studies of cold stress response in pigs for improving cold tolerance as a goal in breeding programs.


Subject(s)
Cold-Shock Response , RNA, Long Noncoding , Animals , Cold Temperature , Cold-Shock Response/genetics , Gene Expression Profiling , Muscle, Skeletal/metabolism , RNA, Long Noncoding/metabolism , Swine , Transcriptome
10.
Front Oncol ; 12: 933210, 2022.
Article in English | MEDLINE | ID: mdl-35875102

ABSTRACT

Necroptosis is a programmed form of necrotic cell death in regulating cancer ontogenesis, progression, and tumor microenvironment (TME) and could drive tumor-infiltrating cells to release pro-inflammatory cytokines, incurring strong immune responses. Nowadays, there are few identified biomarkers applied in clinical immunotherapy, and it is increasingly recognized that high levels of tumor necroptosis could enhance the response to immunotherapy. However, comprehensive characterization of necroptosis associated with TME and immunotherapy in Hepatocellular carcinoma (HCC) remains unexplored. Here, we computationally characterized necroptosis landscape in HCC samples from TCGA and ICGA cohorts and stratified them into two necroptosis clusters (A or B) with significantly different characteristics in clinical prognosis, immune cell function, and TME-landscapes. Additionally, to further evaluate the necroptosis levels of each sample, we established a novel necroptosis-related gene score (NRGscore). We further investigated the TME, tumor mutational burden (TMB), clinical response to immunotherapy, and chemotherapeutic drug sensitivity of HCC subgroups stratified by the necroptosis landscapes. The NRGscore is robust and highly predictive of HCC clinical outcomes. Further analysis indicated that the high NRGscore group resembles the immune-inflamed phenotype while the low score group is analogous to the immune-exclusion or metabolism phenotype. Additionally, the high NRGscore group is more sensitive to immune checkpoint blockade-based immunotherapy, which was further validated using an external HCC cohort, metastatic melanoma cohort, and advanced urothelial cancer cohort. Besides, the NRGscore was demonstrated as a potential biomarker for chemotherapy, wherein the high NRGscore patients with more tumor stem cell composition could be more sensitive to Cisplatin, Doxorubicin, Paclitaxel-based chemotherapy, and Sorafenib therapy. Collectively, a comprehensive characterization of the necroptosis in HCC suggested its implications for predicting immune infiltration and response to immunotherapy of HCC, providing promising strategies for treatment.

11.
Ann Transl Med ; 10(8): 479, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35571443

ABSTRACT

Background: Alternative splicing (AS) is a critical mechanism of post-transcriptional regulation and has been widely reported to be associated with the tumor progression and tumor microenvironment (TME) formation. However, the role of AS in lung adenocarcinoma (LUAD) has not been clearly elucidated. This study presents a comprehensive analysis exploring the impact of AS on prognosis and TME in LUAD. Methods: The gene expression transcriptome profiles and survival data were obtained from The Cancer Genome Atlas (TCGA) database, and the splicing profiles were obtained from the TCGA SpliceSeq database. Base on prognostic AS events, a prognostic signature was constructed using Least Absolute Shrinkage and Selection Operator (LASSO) regression followed by multivariate Cox regression analysis. Survival outcomes was analyzed using the Kaplan-Meier method and the predictive performance of the signature was evaluated using receiver operating characteristic (ROC) curve analysis. Furthermore, the landscape of the TME was assessed by ESTIMATE, Microenvironment Cell Population (MCP)-counter, and single-sample Gene-Set Enrichment Analysis (ssGSEA) algorithms. Results: A total of 127 prognostic AS events with P value <0.001 from 89 genes in LUAD were confirmed. A prognostic signature was constructed based on 20 prognostic AS events. Kaplan-Meier survival analysis demonstrated that higher risk scores were associated with poorer overall survival (OS). The area under the ROC curve of risk scores predicting the 1-, 3-, and 5-year survival probability were 0.791, 0.847, and 0.832, respectively. Furthermore, significant relationship was observed between the prognostic signature and the landscape of the TME. High-risk patients had lower stromal/immune scores, higher tumor purity, and significantly decreased abundance of majority immune cells, and immune-related signatures (P<0.05). Finally, a potential regulatory mechanism of the AS events is displayed in a regulatory network. Conclusions: This research highlights the prognostic value of AS events for patients with LUAD and provide new insight into the regulation of the TME by AS. Notably, AS may affect the patient's prognosis by altering the TME. Our findings provide important guidance for the development of novel biomarkers and therapeutic targets in patients with LUAD.

12.
Front Oncol ; 12: 983554, 2022.
Article in English | MEDLINE | ID: mdl-36776366

ABSTRACT

Background: Hepatoma arterial-embolization prognostic (HAP) series scores have been proposed for prognostic prediction in patients with unresectable hepatocellular carcinoma (uHCC) undergoing transarterial chemoembolization (TACE). However, their prognostic value in TACE plus sorafenib (TACE-S) remains unknown. Here, we aim to evaluate their prognostic performance in such conditions and identify the best model for this combination therapy. Methods: Between January 2012 and December 2018, consecutive patients with uHCC receiving TACE-S were recruited from 15 tertiary hospitals in China. Cox regression analyses were used to investigate the prognostic values of baseline factors and every scoring system. Their prognostic performance and discriminatory performance were evaluated and confirmed in subgroup analyses. Results: A total of 404 patients were enrolled. In the whole cohort, the median follow-up period was 44.2 (interquartile range (IQR), 33.2-60.7) months, the median overall survival (OS) time was 13.2 months, and 336 (83.2%) patients died at the end of the follow-up period. According to multivariate analyses, HAP series scores were independent prognostic indicators of OS. In addition, the C-index, Akaike information criterion (AIC) values, and time-dependent area under the receiver operating characteristic (ROC) curve (AUC) indicated that modified HAP (mHAP)-III had the best predictive performance. Furthermore, the results remained consistent in most subsets of patients. Conclusion: HAP series scores exhibited good predictive ability in uHCC patients accepting TACE-S, and the mHAP-III score was found to be superior to the other HAP series scores in predicting OS. Future prospective high-quality studies should be conducted to confirm our results and help with treatment decision-making.

SELECTION OF CITATIONS
SEARCH DETAIL
...