Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biochemistry ; 63(7): 855-864, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38498694

ABSTRACT

AQP4-IgG is an autoantibody associated with neuromyelitis optica spectroscopic disorder (NMOSD), a central nervous system inflammatory disease that requires early diagnosis and treatment. We designed two fusion proteins, AQP4-DARPin1 and AQP4-DARPin2, comprising the complete antigenic epitopes of aquaporin-4 (AQP4) and the constant region of the scaffold protein DARPin. These fusion proteins were expressed and purified from Escherichia coli and coated on microplates to develop an efficient method for detecting AQP4-IgG. Molecular dynamics simulation revealed that the fusion of AQP4 extracellular epitopes with DARPin did not alter the main structure of DARPin. The purified AQP4-DARPins bound recombinant antibody rAb-53 (AQP4-IgG) with affinities of 135 and 285 nM, respectively. Enzyme-linked immunosorbent assay (ELISA) and immunoprecipitation demonstrated that AQP4-DARPin1 specifically recognized AQP4-IgG in the NMOSD patient serum. AQP4-DARPin1 as a coated antigen showed higher ELISA signal and end point dilution ratio than full-length AQP4. Our AQP4-DARPin1-coated AQP4-IgG ELISA had 100% specificity and 90% sensitivity. These results indicate that AQP4-DARPin1, compared to existing detection strategies that use full-length or extracellular loop peptides of AQP4, provides a new and more effective approach to the ELISA detection of NMOSD.


Subject(s)
Neuromyelitis Optica , Humans , Neuromyelitis Optica/diagnosis , Designed Ankyrin Repeat Proteins , Aquaporin 4/genetics , Epitopes , Immunoglobulin G
2.
BMC Neurol ; 23(1): 10, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36624392

ABSTRACT

BACKGROUND: We investigated the influence of the coronavirus disease 2019 (COVID-19) pandemic on the number of patients with acute ischemic stroke who received intravenous thrombolytic therapy (ITT) in Dalian, China, in 2020. METHODS: This retrospective descriptive study, conducted from February 1, 2020, to August 31, 2020, examined 13 hospitals in Dalian that participated in the "stroke emergency map". To use this "stroke emergency map" of China, patients followed the official "Stroke Map" WeChat account and dialed 120 for emergency medical services. We analyzed the number of patients with acute ischemic stroke who underwent ITT. In particular, we examined the onset-to-door time (ODT), door-to-needle time (DNT), onset-to-needle time (ONT), mode of transportation to the hospital, and National Institutes of Health Stroke Scale (NIHSS) scores before and after ITT. Data were collected for the aforementioned period and compared with the 2021 baseline data from the same time of year. The Mann‒Whitney U test was performed for data analysis. RESULTS: Compared with the data from 2020, the number of patients with acute ischemic stroke who underwent ITT increased (from 735 to 1719 cases) in 2021, but the DNT decreased (from 59 to 45 min; P = 0.002). Moreover, 83.9% of patients in 2020 presented to the hospital without ambulance transport, compared to 81.1% of patients in the 2021 non-COVID-19 pandemic period. Patients with NIHSS scores of 6-14 were more likely to call an ambulance for transport to the hospital than to transport themselves to the emergency department. CONCLUSIONS: During the 2020 COVID-19 pandemic, the DNT was prolonged as a result of strengthened fever surveillance. In 2021, the number of patients with acute ischemic stroke who underwent ITT increased compared to the previous year. Notably, the growth in the number of patients with acute ischemic stroke who underwent ITT benefited from both the "stroke emergency map" of China and the "green channel," a novel treatment approach that focuses on the rational design of the rescue process. TRIAL REGISTRATION: Our study was a retrospective descriptive study, not a clinical trial, thus we did not have to register for clinical trials.


Subject(s)
Brain Ischemia , COVID-19 , Ischemic Stroke , Stroke , Humans , Tissue Plasminogen Activator/therapeutic use , Ischemic Stroke/drug therapy , Ischemic Stroke/epidemiology , Pandemics , Retrospective Studies , Brain Ischemia/complications , Brain Ischemia/drug therapy , Brain Ischemia/epidemiology , Treatment Outcome , Fibrinolytic Agents/therapeutic use , Thrombolytic Therapy , Stroke/drug therapy , Stroke/epidemiology , Time-to-Treatment
4.
Metab Brain Dis ; 36(8): 2483-2494, 2021 12.
Article in English | MEDLINE | ID: mdl-34661812

ABSTRACT

Long non-coding RNA small nucleolar RNA host gene 7 (SNHG7) was reported to regulate the pathogenesis of ischemic stroke. The study aimed to disclose SNHG7 role in oxygen and glucose deprivation (OGD)-induced Neuro-2a (N2a) cell disorders. An OGD injury cell model was established using N2a cells. The expression of SNHG7, microRNA-134-5p (miR-134-5p) and fibroblast growth factor 9 (FGF9) was determined by quantitative real-time polymerase chain reaction. Protein expression was detected by western blot. Cell viability and Lactate Dehydrogenase (LDH) leakage were determined by cell counting kit-8 and LDH activity detection assays. Oxidative stress was investigated by Superoxide Dismutase and Catalase activity assays as well as Malondialdehyde and Reactive Oxygen Species detection kits. Cell apoptosis and caspase-3 activity were severally demonstrated by flow cytometry and caspase-3 activity assays. The interaction between miR-134-5p and SNHG7 or FGF9 was predicted by online databases, and identified by mechanism assays. OGD treatment decreased SNHG7 and FGF9 expression, but increased miR-134-5p expression. OGD treatment repressed cell viability, promoted LDH leakage and induced oxidative stress and apoptosis in N2a cells, which was rescued by SNHG7 overexpression. SNHG7 acted as a sponge for miR-134-5p, and regulated OGD-triggered cell damage by associating with miR-134-5p. Additionally, miR-134-5p depletion protected N2a cells from OGD-induced injury by targeting FGF9. Ectopic SNHG7 expression protected against OGD-induced neuronal cell injury by inducing FGF9 through sponging miR-134-5p, providing a novel therapeutic target for ischemic stroke.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Fibroblast Growth Factor 9/metabolism , Glucose/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neurons/metabolism , Oxygen/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
5.
Br J Pharmacol ; 177(1): 128-144, 2020 01.
Article in English | MEDLINE | ID: mdl-31465536

ABSTRACT

BACKGROUND AND PURPOSE: T helper cell 1 (Th1)-skewed neurotoxicity contributes to the poor outcome of stroke in rodents. Here, we have elucidated the mechanism of the Th1/Th2 shift in acute ischaemic stroke (AIS) patients at hyperacute phase and have looked for a miRNA-based therapeutic target. EXPERIMENTAL APPROACH: MiR-494 levels in blood from AIS patients and controls were measured by real-time PCR. C57BL/6J mice were subjected to transient middle cerebral artery occlusion, and cortical neurons were subjected to oxygen-glucose deprivation. Luciferase reporter system, chromatin immunoprecipitation sequencing (ChIP-Seq), and ChIP-PCR were used to uncover possible mechanisms. KEY RESULTS: In lymphocytes from AIS patients, there was a Th1/Th2 shift and histone deacetylase 2 (HDAC2) was markedly down-regulated. ChIP-seq showed that HDAC2 binding sites were enriched in regulation of Th1 cytokine production, and ChIP-PCR confirmed that HDAC2 binding was changed at the intron of STAT4 and the promoter of T-box transcription factor 21 (T-bet) in lymphocytes from AIS patients. MiR-494 was the most significantly increased miRNA in lymphocytes from AIS patients, and miR-494-3p directly targeted HDAC2. A strong association existed between miR-494 and Th1 cytokines, and neurological deficit as measured by the National Institute of Health Stroke Scale (NIHSS) in AIS patients. In vitro and in vivo experiments showed that antagomir-494 reduced Th1 shift-mediated neuronal and sensorimotor functional damage in the mouse model of ischaemic stroke, via the HDAC2-STAT4 pathway. CONCLUSION AND IMPLICATIONS: We demonstrated that miR-494 inhibition prevented Th1-skewed neurotoxicity through regulation of the HDAC2-STAT4 cascade.


Subject(s)
Histone Deacetylase 2/metabolism , Ischemic Stroke/metabolism , MicroRNAs/metabolism , STAT4 Transcription Factor/metabolism , Th1 Cells/metabolism , Aged , Animals , Antagomirs/pharmacology , Female , Histone Deacetylase 2/antagonists & inhibitors , Humans , Ischemic Stroke/pathology , Jurkat Cells , Male , Mice , Mice, Inbred C57BL , MicroRNAs/antagonists & inhibitors , Middle Aged , STAT4 Transcription Factor/antagonists & inhibitors , Th1 Cells/drug effects , Th1 Cells/pathology
6.
Proc Natl Acad Sci U S A ; 116(18): 9115-9124, 2019 04 30.
Article in English | MEDLINE | ID: mdl-30996120

ABSTRACT

Emerging evidence suggests that tissue plasminogen activator (tPA), currently the only FDA-approved medication for ischemic stroke, exerts important biological actions on the CNS besides its well-known thrombolytic effect. In this study, we investigated the role of tPA on primary neurons in culture and on brain recovery and plasticity after ischemic stroke in mice. Treatment with recombinant tPA stimulated axonal growth in culture, an effect independent of its protease activity and achieved through epidermal growth factor receptor (EGFR) signaling. After permanent focal cerebral ischemia, tPA knockout mice developed more severe sensorimotor and cognitive deficits and greater axonal and myelin injury than wild-type mice, suggesting that endogenously expressed tPA promotes long-term neurological recovery after stroke. In tPA knockout mice, intranasal administration of recombinant tPA protein 6 hours poststroke and 7 more times at 2 d intervals mitigated white matter injury, improved axonal conduction, and enhanced neurological recovery. Consistent with the proaxonal growth effects observed in vitro, exogenous tPA delivery increased poststroke axonal sprouting of corticobulbar and corticospinal tracts, which might have contributed to restoration of neurological functions. Notably, recombinant mutant tPA-S478A lacking protease activity (but retaining the EGF-like domain) was as effective as wild-type tPA in rescuing neurological functions in tPA knockout stroke mice. These findings demonstrate that tPA improves long-term functional outcomes in a clinically relevant stroke model, likely by promoting brain plasticity through EGFR signaling. Therefore, treatment with the protease-dead recombinant tPA-S478A holds particular promise as a neurorestorative therapy, as the risk for triggering intracranial hemorrhage is eliminated and tPA-S478A can be delivered intranasally hours after stroke.


Subject(s)
Neuronal Plasticity/drug effects , Stroke/drug therapy , Tissue Plasminogen Activator/therapeutic use , Animals , Axons/drug effects , Axons/metabolism , Brain/metabolism , Brain Injuries/drug therapy , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Cerebral Infarction , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Neurogenesis/drug effects , Neurons/metabolism , Recovery of Function
7.
Eur J Pharmacol ; 849: 1-10, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30716313

ABSTRACT

Previously study has proved the non-erythropoietic mutant erythropoietin (MEPO) exerted neuroprotective effects against ischemic cerebral injury, with an efficacy similar to that of wild-type EPO. This study investigates its effects on neurogenesis, angiogenesis, and gliogenesis in cerebral ischemic mice. Male C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAO) and reperfusion. EPO (5000 U/kg), MEPO (5000 U/kg) or equal volume of normal saline was injected intraperitoneally. Neurological function was evaluated by Rota-rod test, Neurological severity scores (NSS) and Adhesive removal test. After ischemia and reperfusion (I/R), the survival rate, brain tissue loss, neurogenesis, angiogenesis and gliogenesis were detected by Nissl staining, Immunofluorescence and Western blot, respectively. The results shown that MEPO significantly increased survival rate, reduced brain tissue loss, and improved neurological function after MCAO (P < 0.05). Furthermore, MEPO obviously enhanced the proliferation of neuronal precursors (DCX) and promoted its differentiation into mature neurons (NeuN) (P < 0.05). In addition, compared to normal saline treatment mice, MEPO increased the number of BrdU-positive cells in the cerebral vasculature (P < 0.05). Whereas, MEPO treatment also reduced the numbers of newly generated astrocytes (GFAP) and microglia (Iba1) (P < 0.05). Among all the tests in this study, there was no significant difference between EPO group and MEPO group. Taken together, MEPO promoted the regeneration of neurons and blood vessels in peripheral area of infarction, and suppressed the gliogenesis, thus promoting neurogenesis, improving neurological function and survival rate. Our findings suggest that the MEPO may be a therapeutic drug for ischemic stroke intervention.


Subject(s)
Brain Ischemia/complications , Erythropoietin/genetics , Mutation , Neovascularization, Physiologic/genetics , Neurogenesis/genetics , Neuroglia/pathology , Stroke/genetics , Animals , Cell Proliferation/genetics , Doublecortin Protein , Male , Mice , Mice, Inbred C57BL , Neuroprotection/genetics , Stroke/complications , Stroke/pathology , Stroke/physiopathology
8.
Stroke ; 49(10): 2453-2463, 2018 10.
Article in English | MEDLINE | ID: mdl-30355111

ABSTRACT

Background and Purpose- Type 2 diabetes mellitus (T2DM) is a major comorbidity that exacerbates ischemic brain injury and worsens functional outcome after stroke. T2DM is known to aggravate white matter (WM) impairment, but the underlying mechanism is not completely understood. This study was designed to test the hypothesis that T2DM impedes poststroke WM recovery by suppressing both oligodendrogenesis and beneficial microglia/macrophage responses. Methods- Permanent distal middle cerebral artery occlusion was performed in wild-type, homozygous diabetic db/db, and heterozygous db/+ mice. The adhesive removal, open field, and Morris water maze tests were used to assess neurobehavioral outcomes. Neuronal tissue loss, WM damage, oligodendrogenesis, and microglia/macrophage responses were evaluated up to 35 days after stroke. The functional integrity of WM was measured by electrophysiology. Primary microglia-oligodendrocyte cocultures were used for additional mechanistic studies. Results- T2DM exacerbated structural damage and impaired conduction of compound action potentials in WM 35 days after stroke. The deterioration in WM integrity correlated with poor sensorimotor performance. Furthermore, T2DM impaired the proliferation of oligodendrocyte precursor cells and the generation of new myelinating oligodendrocytes. T2DM also promoted a shift of microglia/macrophage phenotype toward the proinflammatory modality. Coculture studies confirmed that microglia/macrophage polarization toward the proinflammatory phenotype under high glucose conditions suppressed oligodendrocyte precursor cell differentiation. Conclusions- Deterioration of WM integrity and impairments in oligodendrogenesis after stroke are associated with poor long-term functional outcomes in experimental diabetes mellitus. High glucose concentrations may shift microglia/macrophage polarization toward a proinflammatory phenotype, significantly impairing oligodendrocyte precursor cell differentiation and WM repair.


Subject(s)
Brain Ischemia/pathology , Diabetes Mellitus, Type 2/complications , Stroke/physiopathology , White Matter/pathology , Animals , Brain Ischemia/complications , Disease Models, Animal , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/pathology , Macrophages/metabolism , Macrophages/pathology , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Microglia/pathology , Oligodendroglia/pathology , Stroke/complications , Stroke/pathology
9.
Aging Dis ; 7(6): 705-714, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28053821

ABSTRACT

MicroRNA-181 (miR-181) is highly expressed in the brain, and downregulated in miRNA expression profiles of acute ischemic stroke patients. However, the roles of miR-181c in stroke are not known. The clinical relevance of miR-181c in acute stroke patients was evaluated by real-time PCR and correlation analyses. Proliferation and apoptosis of BV2 microglial cells and Neuro-2a cells cultured separately or together under oxidative stress or inflammation were assessed with the Cell Counting Kit-8 and by flow cytometry, respectively. Cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in C57/BL6 mice, and cerebral infarct volume, microglia activation, and expression of pro-apoptotic factors were evaluated by 2,3,5-triphenyl-2H-tetrazolium chloride staining, immunocytochemistry, and western blotting, respectively. Plasma levels of miR-181c were decreased in stroke patients relative to healthy individuals, and were positively correlated with neutrophil number and blood platelet count and negatively correlated with lymphocyte number. Lipopolysaccharide (LPS)/hydrogen peroxide (H2O2) treatment inhibited BV2 microglia proliferation without inducing apoptosis, while miR-181c reduced proliferation but increased the apoptosis of these cells with or without LPS/H2O2 treatment. LPS/H2O2 induced apoptosis in Neuro-2a cells co-cultured with BV2 cells, an effect that was potentiated by miR-181c. In the MCAO model, miR-181c agomir modestly increased infarct volume, markedly decreased microglia activation and B cell lymphoma-2 expression, and increased the levels of pro-apoptotic proteins in the ischemic brain. Our data indicate that miR-181c contributes to brain injury in acute ischemic stroke by promoting apoptosis of microglia and neurons via modulation of pro- and anti-apoptotic proteins.

10.
Exp Neurol ; 272: 41-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26054885

ABSTRACT

Stroke is associated with a high risk of disability and mortality, and with the exception of recombinant tissue-type plasminogen activator for acute stroke, most treatments have proven ineffective. Clinical translation of promising experimental therapeutics is limited by inadequate stroke models and a lack of understanding of the mechanisms underlying acute stroke and how they affect outcome. Bidirectional communication between the ischemic brain and peripheral immune system modulates stroke progression and tissue repair, while epidemiological studies have provided evidence of an association between organ dysfunction and stroke risk. This crosstalk can determine the fate of stroke patients and must be taken into consideration when investigating the pathophysiological mechanisms and therapeutic options for stroke. This review summarizes the current evidence for interactions between the brain and other organs in stroke pathophysiology in basic and clinic studies, and discusses the role of these interactions in the progression and outcome of stroke and how they can direct the development of more effective treatment strategies.


Subject(s)
Brain/physiopathology , Immune System/physiopathology , Stroke/pathology , Stroke/physiopathology , Animals , Brain/immunology , Gastrointestinal Tract/physiopathology , Heart/physiopathology , Heart Diseases/etiology , Humans , Kidney/physiopathology , Liver/physiopathology , Lung/physiopathology , Meta-Analysis as Topic , Pancreas/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...