Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 471: 134365, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38669926

ABSTRACT

The disinfection of fabrics is crucial in preventing the spread of infectious diseases caused by pathogenic microorganisms to maintain public health. A previous study proved that plasma-activated nebulized mist (PANM) could effectively inactivate microorganisms both in aerosol and attached to the surface. In this study, the PANM driven by different plasma gases were employed to inactivate microorganisms on diverse fabrics. The PANM could efficiently inactivate a variety of microorganisms, including bacteria, fungi, and viruses, contaminating different fabrics, and even across covering layers of different fabrics. The mites residing on the cotton fabrics both uncovered and covered with various types of fabrics were also effectively inactivated by the PANM. After 30 times repeated treatments of the PANM, notable changes were observed in the color of several fabrics while the structural integrity and mechanical strength of the fabrics were unaffected and maintained similarly to the untreated fabrics with slight changes in elemental composition. Additionally, only trace amounts of nitrate remained in the fabrics after the PANM treatment. Therefore, the PANM treatment supplied an efficient, broad-spectrum, and environmentally friendly strategy for industrial and household disinfection of fabrics.


Subject(s)
Plasma Gases , Textiles , Plasma Gases/pharmacology , Animals , Disinfection/methods , Bacteria/drug effects , Fungi/drug effects , Nebulizers and Vaporizers , Viruses/drug effects
2.
Int J Biol Macromol ; 233: 123527, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36740108

ABSTRACT

The interactions between cellulose nanocrystals and proteins can regulate the interfacial properties of Pickering emulsions, which plays a leading role in the stabilities of Pickering emulsions. In this work, oil-in-water (O/W) Pickering emulsions with different oil-water ratios were prepared using peanut protein isolate modified by cellulose nanocrystals (PPI/CL-CNCs). The distributions of PPI/CL-CNCs at the oil-water interfaces and the microstructures of Pickering emulsions were observed by CLSM and cryo-SEM. The results showed that stable complexes PPI/CL-CNCs formed thick and dense interface layers on the surface of oil droplets. The results of rheological tests clarified that the Pickering emulsions showed an elastic and gel texture, and their gel strength could be enhanced by regulating the oil-water ratios from 3:7 to 7:3. In addition, after one month of storage, the EI of all emulsions remained above 92 % with no obvious phase separation or demulsification. These results suggested that the PPI/CL-CNCs-stabilized Pickering emulsions showed good physical stabilities. The study on the rheological properties and physical stabilities of PPI/CL-CNCs-based Pickering emulsions provided novel insights on developing highly stable Pickering emulsions.


Subject(s)
Cellulose , Nanoparticles , Cellulose/chemistry , Arachis , Emulsions/chemistry , Nanoparticles/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...