Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 419(1): 38-42, 2007 May 23.
Article in English | MEDLINE | ID: mdl-17475403

ABSTRACT

Prolactin releasing peptide (PrRP) is a neuropeptide with 31 or 20 amino acid residues and regarded as a potent and specific stimulator of pituitary prolactin. PrRP immunoreactive (PrRP-ir) neurons and mRNA are found in medulla oblongata and hypothalamus and the fibers containing PrRP are widely distributed in rat brains. Therefore, it is postulated that PrRP might act as a neurohormone or a neurotransmitter as well as a neuromodulator in the brain. In the present study, we probed the expression of brain PrRP in the estrous cycle of female rats and the relationship between brain PrRP and GnRH. Female rats were divided into four groups: the diestrus, the proestrus, the estrus and the metaestrus, which were identified by the vaginal cytological examination. Immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescent double labeling histochemistry combining confocal laser scanning microscope (CLSM) were used. The results showed that PrRP immunoreactive neurons in nucleus of solitary tract (NTS) and ventrolateral reticular nucleus (VLRN) in the proestrus were less than those in the diestrus, the estrus and the metaestrus. Similarly, the relative optical density of PrRP-ir fibers of the bed nucleus of stria terminalis (BST) in the proestrus was decreased compared with those in other three groups. However, the brain PrRPmRNA level was higher in the proestrus and estrus than those in the metaestrus and diestrus. We also observed the co-localization of GPR10-immunoreactive (GPR10-ir) and GnRH-immunoreactive (GnRH-ir) neurons in hypothalamic medial preoptic area (MPO). The present results provide morphological evidences that PrRP in the female rat brains might participate in the regulation of the rat estrous cycle at least in a direct way.


Subject(s)
Brain/metabolism , Estrous Cycle/physiology , Gene Expression Regulation/physiology , Hypothalamic Hormones/metabolism , Neuropeptides/metabolism , Animals , Brain/anatomy & histology , Female , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Hypothalamic Hormones/genetics , Neuropeptides/genetics , Prolactin-Releasing Hormone , RNA, Messenger/biosynthesis , Rats , Reverse Transcriptase Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...