Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 15(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38786890

ABSTRACT

Ionotropic γ-aminobutyric acid (GABA) receptors in insects, specifically those composed of the RDL (resistant to dieldrin) subunit, serve as important targets for commonly used synthetic insecticides. These insecticides belong to various chemical classes, such as phenylpyrazoles, cyclodienes, meta-diamides, and isoxazolines, with the latter two potentially binding to the transmembrane inter-subunit pocket. However, the specific amino acid residues that contribute to the high sensitivity of insect RDL receptors to these novel insecticides remain elusive. In this study, we investigated the susceptibility of seven distinct Drosophila melanogaster Rdl point mutants against four meta-diamide and isoxazoline insecticides: isocycloseram, fluxametamide, fluralaner, and broflanilide. Our findings indicate that, despite exhibiting increased sensitivity to fluralaner in vitro, the RdlI276C mutant showed resistance to isocycloseram and fluxametamide. Similarly, the double-points mutant RdlI276F+G279S also showed decreased sensitivity to the tested isoxazolines. On the other hand, the RdlG335M mutant displayed high levels of resistance to all tested insecticides. Molecular modeling and docking simulations further supported these findings, highlighting similar binding poses for these insecticides. In summary, our research provides robust in vivo evidence supporting the idea that the inter-subunit amino acids within transmembrane M1 and M3 domains form the binding site crucial for meta-diamide and isoxazoline insecticide interactions. This study highlights the complex interplay between mutations and insecticide susceptibility, paving the way for more targeted pest control strategies.

2.
PLoS Genet ; 20(4): e1011226, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38578788

ABSTRACT

CRISPR-based gene drives offer promising prospects for controlling disease-transmitting vectors and agricultural pests. A significant challenge for successful suppression-type drive is the rapid evolution of resistance alleles. One approach to mitigate the development of resistance involves targeting functionally constrained regions using multiple gRNAs. In this study, we constructed a 3-gRNA homing gene drive system targeting the recessive female fertility gene Tyrosine decarboxylase 2 (Tdc2) in Drosophila suzukii, a notorious fruit pest. Our investigation revealed only a low level of homing in the germline, but feeding octopamine restored the egg-laying defects in Tdc2 mutant females, allowing easier line maintenance than for other suppression drive targets. We tested the effectiveness of a similar system in Drosophila melanogaster and constructed additional split drive systems by introducing promoter-Cas9 transgenes to improve homing efficiency. Our findings show that genetic polymorphisms in wild populations may limit the spread of gene drive alleles, and the position effect profoundly influences Cas9 activity. Furthermore, this study highlights the potential of conditionally rescuing the female infertility caused by the gene drive, offering a valuable tool for the industrial-scale production of gene drive transgenic insects.


Subject(s)
Gene Drive Technology , Infertility, Female , Female , Animals , Humans , Drosophila/genetics , Drosophila melanogaster/genetics , Infertility, Female/genetics , CRISPR-Cas Systems , Fruit , RNA, Guide, CRISPR-Cas Systems , Phenotype
3.
Environ Pollut ; 345: 123416, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38278407

ABSTRACT

In this study, a soil incubation experiment was conducted to explore the influence MgO-treated corn straw biochar (MCB) on the bioavailability and chemical forms of cadmium (Cd), lead (Pb), and arsenic (As), alongside the impact on the bacterial community within paddy soil subjected to both flooded and non-flooded conditions. Raw corn straw biochar (CB) served as the unmodified biochar control, aiding in the understanding of the biochar's role within the composite. The results showed that even at a minimal concentration of 0.5 %, MCB exhibited higher effectiveness in reducing the bioavailability of Pb and Cd compared to 1 % CB. In non-flooded conditions, 0.5 % MCB reduced the bioavailable Pb and Cd by 99.7 % and 87.4 %, respectively, while NaH2PO4-extracted As displayed a 14.5 % increase. With increasing MCB concentrations (from 0.5 % to 1.5 %), soil pH, DOC, EC, available phosphorus, and bioavailable As increased, while bioavailable Pb and Cd exhibited declining tendencies. Flooding did not notably alter MCB's role in reducing Pb and Cd bioavailability, yet it systematically amplified As release. Heavy metal fractions extracted by acetic acid increased in the MCB groups under flooding conditions, especially for As. The inclusion of 0.5 % MCB did not noticeably affect bacterial diversity, whereas higher doses led to reduced diversity and substantial changes in community composition. Specifically, the groups with MCB showed an increase in the Bacteroidetes and Proteobacteria phyla, accompanied by a decrease in Acidobacteria. These alterations were primarily attributed to the increased pH and EC resulting from MgO hydrolysis. Consequently, for Pb/Cd stabilization and soil bacterial diversity, a low dosage of MgO-treated biochar is recommended. However, caution is advised when employing MgO-treated biochar in soils with elevated arsenic levels, particularly under flooded conditions.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Cadmium/analysis , Magnesium Oxide , Lead , Soil Pollutants/analysis , Charcoal/chemistry , Soil/chemistry , Oryza/chemistry
4.
Sci Adv ; 8(47): eabq3132, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36417522

ABSTRACT

Hundreds of neurotoxic insecticides are currently in use. However, only a few direct targets have been identified. Here, using Drosophila and the insecticide flonicamid, we identified nicotinamidase (Naam) as a previous unidentified molecular target for an insecticide. Naam is expressed in chordotonal stretch-receptor neurons, and inhibition of Naam by a metabolite of flonicamid, TFNA-AM (4-trifluoromethylnicotinamide), induces accumulation of substrate nicotinamide and greatly inhibits negative geotaxis. Engineered flies harboring a point mutation in the active site show insecticide resistance and defects in gravity sensing. Bees are resistant to flonicamid because of a gene duplication, resulting in the generation of a TFNA-AM-insensitive Naam. Our results, in combination with the absence of genes encoding Naam in vertebrate genomes, suggest that TFNA-AM and potential species-specific Naam inhibitors could be developed as novel insecticides, anthelmintics, and antimicrobials for agriculture and human health.

SELECTION OF CITATIONS
SEARCH DETAIL
...