Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36295417

ABSTRACT

Oxidation behaviors of three Ni-based model alloys and pure Ni in the temperature range of 700-1200 °C are investigated to reveal effects of Cr, Al, and Si on the oxidation resistance of Ni-based superalloys. The formation and integrity of consecutive chromia or alumina layers are important for excellent oxidation resistance. The addition of 20 at.% Cr can effectively improve the oxidation resistance of Ni-based alloys by forming a thin chromia film below 1000 °C, while adding 15 at.% Al has a beneficial effect on the oxidation resistance of Ni-based alloys at temperatures above 900 °C. The addition of 2 at.% Si to Ni-Al alloy is insufficient to form a protective SiO2 layer but can accelerate the formation of alumina, which enables Ni-Al alloy to form a consecutive inner alumina layer at a relatively low temperature of 800 °C and further improve the oxidation resistance above 800 °C.

2.
J Phys Chem Lett ; 10(24): 7929-7936, 2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31808347

ABSTRACT

By comparing optical spectral results of both Sn-rich and Sn-poor Cu2ZnSnS4 (CZTS) with the previously calculated defect levels, we confirm that the band-tail states in CZTS originate from the high concentration of 2CuZn + SnZn defect clusters, whereas the deep-donor states originate from the high concentration of SnZn. In Sn-rich CZTS, the absorption, reflectance, and photocurrent (PC) spectra show band-tail states that shrink the bandgap to only ∼1.34 eV, while photoluminescence (PL) and PC spectra consistently show that abundant CuZn + SnZn donor states produce a PL peak at ∼1.17 eV and abundant SnZn deep-donor states produce a PL peak near 0.85 eV. In contrast, Sn-poor CZTS shows neither bandgap shrinking nor any deep-donor-defect induced PL and PC signals. These results highlight that a Sn-poor composition is critical for the reduction of band-tailing effects and deep-donor defects and thus the overcoming of the severe open-circuit voltage (Voc) deficiency problem in CZTS solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...