Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 254
Filter
1.
AMIA Jt Summits Transl Sci Proc ; 2024: 334-343, 2024.
Article in English | MEDLINE | ID: mdl-38827110

ABSTRACT

Class imbalance issues are prevalent in the medical field and significantly impact the performance of clinical predictive models. Traditional techniques to address this challenge aim to rebalance class proportions. They generally assume that the rebalanced proportions are derived from the original data, without considering the intricacies of the model utilized. This study challenges the prevailing assumption and introduces a new method that ties the optimal class proportions to model complexity. This approach allows for individualized tuning of class proportions for each model. Our experiments, centered on the opioid overdose prediction problem, highlight the performance gains achieved by this approach. Furthermore, rigorous regression analysis affirms the merits of the proposed theoretical framework, demonstrating a statistically significant correlation between hyperparameters controlling model complexity and the optimal class proportions.

2.
Waste Manag ; 186: 1-10, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38833785

ABSTRACT

The continued growth in demand for mineral resources has led to a large amount of mining wastes, which is a major challenge in the context of carbon neutrality and climate change. In this study, runoff migration, batch leaching, and column experiments were used to investigate the short-, medium-, and long-term leaching of heavy metals from legacy tailings, respectively; the cumulative metal release kinetic equations were established, and the long-term effects of tailings leaching were verified by HYDRUS-1D. In runoff migration experiments, surface dissolution of tailings and the co-migration of adsorbed soil particles by erosion were the main carriers in the early stages of leachate formation (Mn âˆ¼ 65 mg/L and SO42- up to 2697.2 mg/L). Batch leaching tests showed that the concentration of heavy metals in soil leached by acid rain were 0.1 âˆ¼ 22.0 µg/L for Cr, 0.7 âˆ¼ 26.0 µg/L for Cu, 4.8 âˆ¼ 5646.0 µg/L for Mn, 0.3 âˆ¼ 232.4 µg/L for Ni, and 1.3 âˆ¼ 448.0 µg/L for Zn. The results of column experiments indicated that some soluble components and metals with high mobility showed a significant decreasing trend at cumulative L/S ≤ 2. Additionally, the metals have higher leaching rates under TCLP conditions, as shown by Mn > Co > Zn > Cd > Ni > Cu > Pb > Cr. The fitting results of Langmuir equation were closer to the cumulative release of metals in the real case, and the release amounts of Mn, Zn, Co, and Ni were higher with 55, 5.84, 2.66, and 2.51 mg/kg, respectively. The water flow within tailings affects the spatial distribution of metals, which mainly exist in relatively stable chemical fractions (F3 + F4 + F5 > 90 %) after leaching. Numerical simulation verified that Mn in leachate has reached 8 mg/L at a scale of up to 100 years. The research results are expected to provide technical basis for realizing the resource utilization of tailings in the future.

3.
Sci Total Environ ; 940: 173702, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38830416

ABSTRACT

The structural variances of adsorbents play a crucial role in determining the number of effective adsorption sites and pretreatment performance. However, there is still a gap in comprehending the impact of different carbon structural adsorbents on membrane fouling. Therefore, this study aimed to compare the efficacy of granular activated carbon (GAC), powdered activated carbon (PAC), and activated carbon fiber (ACF) in mitigating membrane fouling during municipal sewage reclamation using an aerobic granular sludge membrane bioreactor (AGMBR). The results demonstrated that the utilization of PAC significantly enhanced the normalized flux and reduced fouling resistance in comparison to GAC and ACF systems. PAC effectively adsorbed low and medium-molecular-weight pollutants present in raw sewage, resulting in an increase in average particle size and a decrease in foulant content on the membrane surface. The Hermia model indicated that adsorption pretreatment minimized standard blocking while promoting the formation of a sparse and porous cake layer. Moreover, according to the extended Derjaguin-Landau-Verwey-Overbeek theory, PAC has been demonstrated as the optimal antifouling system owing to its enhanced repulsion between membrane-foulant and foulant-foulant interactions. Correlation analysis revealed that the exceptional antifouling performance of the PAC system was due to its high removal rates of chemical oxygen demand (~78 %) and suspended solids (~97 %). This research offers valuable insights into the mitigation of membrane fouling through the utilization of adsorbents featuring diverse carbon structures.

4.
Neurochem Res ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884889

ABSTRACT

Prompt reperfusion after cerebral ischemia is important to maintain neuronal survival and reduce permanent disability and death. However, the resupply of blood can induce oxidative stress, inflammatory response and apoptosis, further leading to tissue damage. Here, we report the versatile biological roles of transcript-induced in spermiogenesis 40 (Tisp40) in ischemic stroke. We found that the expression of Tisp40 was upregulated in ischemia/reperfusion-induced brain tissues and oxygen glucose deprivation/returned -stimulated neurons. Tisp40 deficiency increased the infarct size and neurological deficit score, and promoted inflammation and apoptosis. Tisp40 overexpression played the opposite role. In vitro, the oxygen glucose deprivation/returned model was established in Tisp40 knockdown and overexpression primary cultured cortical neurons. Tisp40 knockdown can aggravate the process of inflammation and apoptosis, and Tisp40 overexpression ameliorated the aforementioned processes. Mechanistically, Tisp40 protected against ischemic stroke via activating the AKT signaling pathway. Tisp40 may be a new therapeutic target in brain ischemia/reperfusion injury.

5.
J Agric Food Chem ; 72(23): 12988-13000, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38820247

ABSTRACT

Biological nitrogen fixation is crucial for agriculture and improving fertilizer efficiency, but organic fertilizers in enhancing this process remain debated. Here, we investigate the impact of organic fertilizers on biological nitrogen fixation through experiments and propose a new model where bacterial interactions with complex carbon sources enhance nitrogen fixation. Field experiments showed that adding organic fertilizers increased the nitrogenase activity by 57.85%. Subculture experiments revealed that organic fertilizer addition enriched genes corresponding to complex carbon and energy metabolism, as well as nifJ involved in electron transfer for nitrogenase. It also enhanced bacterial interactions and enhanced connectors associated with complex carbon degradation. Validation experiments demonstrated that combinations increased nitrogenase activity by 2.98 times compared to the single. Our findings suggest that organic fertilizers promoted nitrogen fixation by enhancing microbial cooperation, improved the degradation of complex carbon sources, and thereby provided utilizable carbon sources, energy, and electrons to N-fixers, thus increasing nitrogenase activity and nitrogen fixation.


Subject(s)
Carbon , Fertilizers , Nitrogen Fixation , Nitrogenase , Fertilizers/analysis , Carbon/metabolism , Carbon/chemistry , Nitrogenase/metabolism , Nitrogenase/chemistry , Bacteria/metabolism , Bacteria/genetics , Nitrogen/metabolism , Soil Microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry
6.
Food Sci Biotechnol ; 33(8): 1947-1956, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38752121

ABSTRACT

Heptadecanoic acid (C17:0), an odd-chain saturated fatty acid (OCSFA) in ruminant lipid, has been demonstrated to be potential for treating cancers. Our results also showed that sheep tail fat (STF) with higher level of C17:0-containing saturated fatty acids (SFAs) whereas lower level of oleic acid (C18:1), performed remarkable inhibition against non-small-cell lung cancer (NSCLC) cells. To enrich the content of C17:0, a C17:0-rich SFA concentrate (HRSC) was prepared from STF by solvent crystallization and urea complexation methods (hexane/STF = 3.5/1, 4 °C for 8 h, and 80% ethanol/urea/free fatty acids = 8/1/1, 4 °C for 6 h). The content of C17:0 was up from 3.02 to 6.34% and the recovery was 4.17%. Biological experiments showed that HRSC exerted better antiproliferative effect against NSCLC cells. Moreover, HRSC performed enhanced inhibitory effect in A549 cell xenograft mouse model. Therefore, HRSC has the potential to be applied in adjuvant therapy for NSCLC. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01504-w.

7.
Plant Physiol Biochem ; 210: 108656, 2024 May.
Article in English | MEDLINE | ID: mdl-38685151

ABSTRACT

Squamosa Promoter Binding Protein-Like (SPL) plays a crucial role in regulating plant development and combating stress, yet its mechanism in regulating resistance to Cd toxicity remains unclear. In this study, we cloned a nuclear-localized transcription factor, NtSPL4a, from the tobacco cultivar TN90. Transient co-expression results showed that miR156 significantly reduced the expression of NtSPL4a by binding to the 3'-UTR of its transcript. We obtained transgenic tobacco overexpressing NtSPL4a (including the 3'-UTR) and NtSPL4aΔ (lacking the 3'-UTR) through Agrobacterium-mediated genetic transformation. Compared to the wild type (WT), overexpression of NtSPL4a/NtSPL4aΔ shortened the flowering time and exhibited a more developed root system. The transgenic tobacco showed significantly reduced Cd content, being 85.1% (OE-NtSPL4a) and 46.7% (OE-NtSPL4aΔ) of WT, respectively. Moreover, the upregulation of NtSPL4a affected the mineral nutrient homeostasis in transgenic tobacco. Additionally, overexpression of NtSPL4a/NtSPL4aΔ effectively alleviated leaf chlorosis and oxidative stress induced by Cd toxicity. One possible reason is that the overexpression of NtSPL4a/NtSPL4aΔ can effectively promote the accumulation of non-enzymatic antioxidants. A comparative transcriptomic analysis was performed between transgenic tobacco and WT to further unravel the global impacts brought by NtSPL4a. The tobacco overexpressing NtSPL4a had 183 differentially expressed genes (77 upregulated, 106 downregulated), while the tobacco overexpressing NtSPL4aΔ had 594 differentially expressed genes (244 upregulated, 350 downregulated) compared to WT. These differentially expressed genes mainly included transcription factors, metal transport proteins, flavonoid biosynthesis pathway genes, and plant stress-related genes. Our study provides new insights into the role of the transcript factor SPL in regulating Cd tolerance.


Subject(s)
Cadmium , Gene Expression Regulation, Plant , Nicotiana , Plant Proteins , Cadmium/toxicity , Cadmium/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Materials (Basel) ; 17(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38591564

ABSTRACT

In sodium-cooled fast reactors, the wettability of sodium with materials is closely related to sodium-related operations and the detection accuracy of instruments and meters, so how to achieve the selection of materials with different wettability requirements is a key problem in engineering design. To meet these requirements, the wetting behaviors of liquid sodium with nine transition metals were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and molecular dynamics (MD) simulations. The results show that metals such as zinc and gold, which react with sodium to form intermetallic compounds at the interface, exhibit superior wettability. Followed by the metals that have strong interatomic interactions even though they do not react with sodium or dissolve each other, such as cobalt, nickel and copper, while the wettability of these systems tends to be poor at low temperatures. Systems that do not react with each other or have strong interatomic affinities proved to be the most difficult to wet. Notably, metals with the closest-packed crystal structures of fcc and hcp generally have better wettability than those with a bcc structure. They can be a valuable guide for experimental research and technical control.

9.
Sci Rep ; 14(1): 9165, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38644394

ABSTRACT

Graph domain adaptation (GDA) aims to address the challenge of limited label data in the target graph domain. Existing methods such as UDAGCN, GRADE, DEAL, and COCO for different-level (node-level, graph-level) adaptation tasks exhibit variations in domain feature extraction, and most of them solely rely on representation alignment to transfer label information from a labeled source domain to an unlabeled target domain. However, this approach can be influenced by irrelevant information and usually ignores the conditional shift of the downstream predictor. To effectively address this issue, we introduce a target-oriented unsupervised graph domain adaptive framework for graph adaptation called TO-UGDA. Particularly, domain-invariant feature representations are extracted using graph information bottleneck. The discrepancy between two domains is minimized using an adversarial alignment strategy to obtain a unified feature distribution. Additionally, the meta pseudo-label is introduced to enhance downstream adaptation and improve the model's generalizability. Through extensive experimentation on real-world graph datasets, it is proved that the proposed framework achieves excellent performance across various node-level and graph-level adaptation tasks.

10.
Environ Sci Pollut Res Int ; 31(21): 30273-30287, 2024 May.
Article in English | MEDLINE | ID: mdl-38613761

ABSTRACT

Reducing the accumulation of cadmium (Cd) and mitigating its toxicity are pivotal strategies for addressing Cd pollution's threats to agriculture and human health. Hydrogen sulfide (H2S) serves as a signaling molecule, playing a crucial role in plant stress defense mechanisms. Nevertheless, a comprehensive assessment of the impact of exogenous H2S on plant growth, antioxidant properties, and gene expression under Cd stress remains lacking. In this meta-analysis, we synthesized 575 observations from 27 articles, revealing that exogenous H2S significantly alleviates Cd-induced growth inhibition in plants. Specifically, it enhances root length (by 8.71%), plant height (by 15.67%), fresh weight (by 15.15%), dry weight (by 22.54%), and chlorophyll content (by 27.99%) under Cd stress conditions. H2S boosts antioxidant enzyme activity, particularly catalase (CAT), by 39.51%, thereby reducing Cd-induced reactive oxygen species (ROS) accumulation. Moreover, it impedes Cd translocation from roots to shoots, resulting in a substantial 40.19% reduction in stem Cd content. Additionally, H2S influences gene expression in pathways associated with antioxidant enzymes, metal transport, heavy metal tolerance, H2S biosynthesis, and energy metabolism. However, the efficacy of exogenous H2S in alleviating Cd toxicity varies depending on factors such as plant species, concentration of the H2S donor sodium hydrosulfide (NaHS), application method, and cultivation techniques. Notably, NaHS concentrations exceeding 200 µM may adversely affect plants. Overall, our study underscores the role of exogenous H2S in mitigating Cd toxicity and elucidates its mechanism, providing insights for utilizing H2S to combat Cd pollution in agriculture.


Subject(s)
Cadmium , Hydrogen Sulfide , Plants , Cadmium/toxicity , Plants/drug effects , Soil Pollutants/toxicity
11.
Water Res ; 256: 121624, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38669903

ABSTRACT

The algal-bacterial wastewater treatment process has been proven to be highly efficient in removing nutrients and recovering nitrogen (N). However, the recovery of the valuable N-rich biopolymer, cyanophycin, remains limited. This research explored the synthesis mechanism and recovery potential of cyanophycin within two algal-bacterial symbiotic reactors. The findings reveal that the synergy between algae and bacteria enhances the removal of N and phosphorus. The crude contents of cyanophycin in the algal-bacterial consortia reached 115 and 124 mg/g of mixed liquor suspended solids (MLSS), respectively, showing an increase of 11.7 %-20.4 % (p < 0.001) compared with conventional activated sludge. Among the 170 metagenome-assembled genomes (MAGs) analyzed, 50 were capable of synthesizing cyanophycin, indicating that cyanophycin producers are common in algal-bacterial systems. The compositions of cyanophycin producers in the two algal-bacterial reactors were affected by different lighting initiation time. The study identified two intracellular synthesis pathways for cyanophycin. Approximately 36 MAGs can synthesize cyanophycin de novo using ammonium and glucose, while the remaining 14 MAGs require exogenous arginine for production. Notably, several MAGs with high abundance are capable of assimilating both nitrate and ammonium into cyanophycin, demonstrating a robust N utilization capability. This research also marks the first identification of potential horizontal gene transfer of the cyanophycin synthase encoding gene (cphA) within the wastewater microbial community. This suggests that the spread of cphA could expand the population of cyanophycin producers. The study offers new insights into recycling the high-value N-rich biopolymer cyanophycin, contributing to the advancement of wastewater resource utilization.


Subject(s)
Microalgae , Nitrogen , Nitrogen/metabolism , Microalgae/metabolism , Bacteria/metabolism , Bioreactors , Waste Disposal, Fluid/methods , Wastewater , Bacterial Proteins
12.
Genes (Basel) ; 15(3)2024 03 15.
Article in English | MEDLINE | ID: mdl-38540425

ABSTRACT

Cadmium (Cd)-induced oxidative stress detrimentally affects hyperaccumulator growth, thereby diminishing the efficacy of phytoremediation technology aimed at Cd pollution abatement. In the domain of plant antioxidant mechanisms, the role of glutathione peroxidase (GPX) in conferring Cd tolerance to tobacco (Nicotiana tabacum) remained unclear. Our investigation employed genome-wide analysis to identify 14 NtGPX genes in tobacco, revealing their organization into seven subgroups characterized by analogous conserved domain patterns. Notably, qPCR analysis highlighted NtGPX8a as markedly responsive to Cd2+ stress. Subsequent exploration through yeast two-hybridization unveiled NtGPX8a's utilization of thioredoxins AtTrxZ and AtTrxm2 as electron donors, and without interaction with AtTrx5. Introduction of NtGPX8a into Escherichia coli significantly ameliorated Cd-induced adverse effects on bacterial growth. Transgenic tobacco overexpressing NtGPX8a demonstrated significantly augmented activities of GPX, SOD, POD, and CAT under Cd2+ stress compared to the wild type (WT). Conversely, these transgenic plants exhibited markedly reduced levels of MDA, H2O2, and proline. Intriguingly, the expression of NtGPX8a in both E. coli and transgenic tobacco led to increased Cd accumulation, confirming its dual role in enhancing Cd tolerance and accumulation. Consequently, NtGPX8a emerges as a promising candidate gene for engineering transgenic hyperaccumulators endowed with robust tolerance for Cd-contaminated phytoremediation.


Subject(s)
Cadmium , Nicotiana , Cadmium/toxicity , Cadmium/metabolism , Nicotiana/genetics , Hydrogen Peroxide/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Antioxidants/metabolism , Glutathione Peroxidase/genetics
13.
Chem Commun (Camb) ; 60(30): 4080-4083, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38506374

ABSTRACT

CoMnHCF is utilized in aqueous sodium/zinc mixed ion batteries and exhibits a high reversible capacity with good rate and cycle performances. At 0.05 A g-1 current density, the CoMnHCF can deliver a specific capacity for 180.4 mA h g-1, and have 99.3% capacity retention after 300 cycles at 0.3 A g-1. Such high reversible capacity profits from Mn vacancies that generate in situ during the first cycle, which provides more active sites for Zn storage. The de-intercalation of Na+ further elevates this good electrochemical performance. Co atoms in the framework are not only involved in the redox reactions, but help to support the structure, thus achieving better cycle stabilities.

14.
Neural Regen Res ; 19(10): 2270-2280, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38488561

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202410000-00028/figure1/v/2024-02-06T055622Z/r/image-tiff Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic plasticity is associated with the activation of the NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasome. 3'-Deoxyadenosin, an active component of the Chinese fungus Cordyceps militaris, has strong anti-inflammatory effects. However, whether 3'-deoxyadenosin attenuates methamphetamine-induced aberrant synaptic plasticity via an NLRP3-mediated inflammatory mechanism remains unclear. We first observed that 3'-deoxyadenosin attenuated conditioned place preference scores in methamphetamine-treated mice and decreased the expression of c-fos in hippocampal neurons. Furthermore, we found that 3'-deoxyadenosin reduced the aberrant potentiation of glutamatergic transmission and restored the methamphetamine-induced impairment of synaptic plasticity. We also found that 3'-deoxyadenosin decreased the expression of NLRP3 and neuronal injury. Importantly, a direct NLRP3 deficiency reduced methamphetamine-induced seeking behavior, attenuated the impaired synaptic plasticity, and prevented neuronal damage. Finally, NLRP3 activation reversed the effect of 3'-deoxyadenosin on behavior and synaptic plasticity, suggesting that the anti-neuroinflammatory mechanism of 3'-deoxyadenosin on aberrant synaptic plasticity reduces methamphetamine-induced seeking behavior. Taken together, 3'-deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome.

15.
Mol Neurobiol ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38367134

ABSTRACT

Aging and interactions between genetic and environmental factors are believed to be involved the chronic development of Parkinson's disease (PD). Among PD patients, abnormally aggregated α-synuclein is a major component of the Lewy body. Generally, the intranasal route is believed to be a gate way to the brain, and it assists environmental neurotoxins in entering the brain and is related to anosmia during early PD. The current study applies the chronic intranasal application of lipopolysaccharides (LPS) in 4-, 8-, 12- and 16-month-old A53T-α-synuclein (A53T-α-Syn) transgenic C57BL/6 mice at 2-day intervals for a 2-month period, for evaluating the behavioral, pathological, and biochemical changes and microglial activation in these animals. According to our results, after intranasal administration of LPS, A53T-α-Syn mice showed severe progressive anosmia, hypokinesia, selective dopaminergic (DAergic) neuronal losses, decreased striatal dopamine (DA) level, and enhanced α-synuclein accumulation within the substantia nigra (SN) in an age-dependent way. In addition, we found obvious NF-кB activation, Nurr1 inhibition, IL-1ß, and TNF-α generation within the microglia of the SN. Conversely, the wild-type (WT) mice showed mild, whereas A53T-α-Syn mice had moderate PD-like changes among the old mice. This study demonstrated the synergistic effect of intranasal LPS and α-synuclein burden on PD development. Its underlying mechanism may be associated with Nurr1 inhibition within microglia and the amplification of CNS neuroinflammation. The mice with multiple factors, including aging, neuroinflammation, and α-synuclein mutation, have played a significant role in enhancing our understanding of how inflammation and α-synuclein mutation contribute to the neurodegeneration observed in PD.

16.
Physiol Rep ; 12(3): e15946, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38339831

ABSTRACT

Occupational exposure to extreme high temperatures and the increasing global temperatures necessitates a deeper understanding of the impact of heat exposure on human health. However, the molecular mechanisms underlying the response of monocytes and neutrophils to heat exposure in occupational population remain to be fully elucidated. This study used longitudinal transcriptome to assess the impact of acute heat exposure (50°C for 30 min) in 10 subjects from a mine rescue team before acute heat exposure (baseline) and at 5 min, 30 min, 1 h, and 24 h after acute heat exposure (recovery). The time-series analysis revealed a coordinated molecular choreography of changes involving inflammation, coagulation, extracellular matrix, and energy metabolism. Importantly, the study characterized the inflammatory signature associated with heat exposure in monocytes and neutrophils, as evidenced by the rapid activation of the inflammation-related transcriptome following heat exposure. Additionally, we pinpointed potential regulators, such as NR4A1, FOSL1, EGR3, and ATF3. In summary, the study suggested that the initial response to heat stress in monocytes and neutrophils from mine rescue team member was primarily characterized by a pro-inflammatory stress response, which could potentially lead to the development of inflammation and ultimately result in a systemic inflammatory response in heatstroke.


Subject(s)
Monocytes , Transcriptome , Humans , Neutrophils , Inflammation/genetics , Heat-Shock Response
17.
Sci Transl Med ; 16(734): eade7347, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38354227

ABSTRACT

Nonalcoholic fatty liver (NAFL) remains relatively benign, but high-risk to end-stage liver diseases become highly prevalent when it progresses into nonalcoholic steatohepatitis (NASH). Our current understanding of the development of NAFL to NASH remains insufficient. In this study, we revealed MAP kinase (MAPK) activation as the most notable molecular signature associated with NASH progression across multiple species. Furthermore, we identified suppressor of IKKε (SIKE) as a conserved and potent negative controller of MAPK activation. Hepatocyte-specific overexpression of Sike prevented NASH progression in diet- and toxin-induced mouse NASH models. Mechanistically, SIKE directly interacted with TGF-ß-activated kinase 1 (TAK1) and TAK1-binding protein 2 (TAB2) to interrupt their binding and subsequent TAK1-MAPK signaling activation. We found that indobufen markedly up-regulated SIKE expression and effectively improved NASH features in mice and macaques. These findings identify SIKE as a MAPK suppressor that prevents NASH progression and provide proof-of-concept evidence for targeting the SIKE-TAK1 axis as a potential NASH therapy.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/metabolism , Signal Transduction/physiology , Hepatocytes/metabolism , Gene Expression Profiling , Mitogen-Activated Protein Kinases/metabolism , Liver/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
18.
Mol Med ; 30(1): 4, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172666

ABSTRACT

BACKGROUND: Autophagic defects are involved in Methamphetamine (Meth)-induced neurotoxicity. Syntaxin 17 (Stx17), a member of the SNARE protein family, participating in several stages of autophagy, including autophagosome-late endosome/lysosome fusion. However, the role of Stx17 and potential mechanisms in autophagic defects induced by Meth remain poorly understood. METHODS: To address the mechanism of Meth-induced cognitive impairment, the adenovirus (AV) and adeno-associated virus (AAV) were injected into the hippocampus for stereotaxis to overexpress Stx17 in vivo to examine the cognitive ability via morris water maze and novel object recognition. In molecular level, the synaptic injury and autophagic defects were evaluated. To address the Meth induced neuronal damage, the epidermal growth factor receptor (EGFR) degradation assay was performed to evaluate the degradability of the "cargos" mediated by Meth, and mechanistically, the maturation of the vesicles, including autophagosomes and endosomes, were validated by the Co-IP and the GTP-agarose affinity isolation assays. RESULTS: Overexpression of Stx17 in the hippocampus markedly rescued the Meth-induced cognitive impairment and synaptic loss. For endosomes, Meth exposure upregulated Rab5 expression and its guanine-nucleotide exchange factor (GEF) (immature endosome), with a commensurate decreased active form of Rab7 (Rab7-GTP) and impeded the binding of Rab7 to CCZ1 (mature endosome); for autophagosomes, Meth treatment elicited a dramatic reduction in the overlap between Stx17 and autophagosomes but increased the colocalization of ATG5 and autophagosomes (immature autophagosomes). After Stx17 overexpression, the Rab7-GTP levels in purified late endosomes were substantially increased in parallel with the elevated mature autophagosomes, facilitating cargo (Aß42, p-tau, and EGFR) degradation in the vesicles, which finally ameliorated Meth-induced synaptic loss and memory deficits in mice. CONCLUSION: Stx17 decrease mediated by Meth contributes to vesicle fusion defects which may ascribe to the immature autophagosomes and endosomes, leading to autophagic dysfunction and finalizes neuronal damage and cognitive impairments. Therefore, targeting Stx17 may be a novel therapeutic strategy for Meth-induced neuronal injury.


Subject(s)
Autophagosomes , Autophagy , Animals , Mice , Autophagosomes/metabolism , Endosomes/metabolism , ErbB Receptors/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanosine Triphosphate/metabolism
19.
Small ; : e2310238, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267815

ABSTRACT

Cesium lead halide (CsPbX3 , X = Br, Cl, and I) nanocrystals (NCs) are widely concerned and applied in many fields due to the excellent photoelectric performance. However, the toxicity of Pb and the loss of luminescence in water limit its application in vivo. A stable perovskite nanomaterial with good bioimaging properties is developed by incorporating europium (Eu) in CsPbX3 NCs followed with the surface coating of silica (SiO2 ) shell (CsPbX3 :Eu@SiO2 ). Through the surface coating of SiO2 , the luminescence stability of CsPbBr3 in water is improved and the leakage of Pb2+ is significantly reduced. In particular, Eu doping inhibits the photoluminescence quantum yield reduction of CsPbBr3 caused by SiO2 coating, and further reduces the release of Pb2+ . CsPbBr3 :Eu@SiO2 nanoparticles (NPs) show efficient luminescence in water and good biocompatibility to achieve cell imaging. More importantly, CsPb(ClBr)3 :Eu@SiO2 NPs are obtained by adjusting the halogen components, and green light and blue light are realized in zebrafish imaging, showing good imaging effect and biosafety. The work provides a strategy for advanced perovskite nanomaterials toward biological practical application.

20.
Sci Total Environ ; 914: 170002, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38220024

ABSTRACT

The motility behaviors at the individual-cell level and the collective physiological responsive behaviors of aerobic denitrifier, Enterobacter cloacae strain HNR under high salt stress were investigated. The results revealed that as salinity increased, electron transport activity and adenosine triphosphate content decreased from 15.75 µg O2/g/min and 593.51 mM/L to 3.27 µg O2/g/min and 5.34 mM/L, respectively, at 40 g/L, leading to a reduction in the rotation velocity and vibration amplitude of strain HNR. High salinity stress (40 g/L) down-regulated genes involved in ABC transporters (amino acids, sugars, metal ions, and inorganic ions) and activated the biofilm-related motility regulation mechanism in strain HNR, resulting in a further decrease in flagellar motility capacity and an increase in extracellular polymeric substances secretion (4.08 mg/g cell of PS and 40.03 mg/g cell of PN at 40 g/L). These responses facilitated biofilm formation and proved effective in countering elevated salt stress in strain HNR. Moreover, the genetic diversity associated with biofilm-related motility regulation in strain HNR enhanced the adaptability and stability of the strain HNR populations to salinity stress. This study enables a deeper understanding of the response mechanism of aerobic denitrifiers to high salt stress.


Subject(s)
Enterobacter cloacae , Salt Stress , Enterobacter cloacae/genetics , Biofilms , Extracellular Polymeric Substance Matrix , Ions , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...