Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
1.
J Transl Med ; 22(1): 606, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951801

ABSTRACT

BACKGROUND: The spatial context of tumor-infiltrating immune cells (TIICs) is important in predicting colorectal cancer (CRC) patients' clinical outcomes. However, the prognostic value of the TIIC spatial distribution is unknown. Thus, we aimed to investigate the association between TIICs in situ and patient prognosis in a large CRC sample. METHODS: We implemented multiplex immunohistochemistry staining technology in 190 CRC samples to quantify 14 TIIC subgroups in situ. To delineate the spatial relationship of TIICs to tumor cells, tissue slides were segmented into tumor cell and microenvironment compartments based on image recognition technology, and the distance between immune and tumor cells was calculated by implementing the computational pipeline phenoptr. RESULTS: MPO+ neutrophils and CD68+IDO1+ tumor-associated macrophages (TAMs) were enriched in the epithelial compartment, and myeloid lineage cells were located nearest to tumor cells. Except for CD68+CD163+ TAMs, other cells were all positively associated with favorable prognosis. The prognostic predictive power of TIICs was highly related to their distance to tumor cells. Unsupervised clustering analysis divided colorectal cancer into three subtypes with distinct prognostic outcomes, and correlation analysis revealed the synergy among B cells, CD68+IDO1+TAMs, and T lineage cells in producing an effective immune response. CONCLUSIONS: Our study suggests that the integration of spatial localization with TIIC abundance is important for comprehensive prognostic assessment.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Prognosis , Male , Female , Middle Aged , Tumor Microenvironment/immunology , Cluster Analysis , Aged , Lymphocytes, Tumor-Infiltrating/immunology , Immunohistochemistry , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Spatial Analysis
2.
Clin Ophthalmol ; 18: 1851-1860, 2024.
Article in English | MEDLINE | ID: mdl-38948340

ABSTRACT

Background: To compare the efficacy of intravitreal injections of Conbercept combined with dexamethasone (DEX) for macular edema (ME) following central retinal vein occlusion (CRVO). Methods: This was a prospective, single-masked, randomised, controlled clinical trial. Patients with ME following CRVO were randomised into groups to receive intravitreal injections of 0.5 mg Conbercept plus 0.2 mg DEX or 0.5 mg Conbercept alone on day 0 followed by repeat injections as indicated. The primary outcome measure was the change in best-corrected visual acuity (BCVA) from baseline to month 12. Secondary outcome measures included decrease in central retinal thickness (CRT), injection frequency and interval and percentage of patients who gained more than 15 ETDRS letters or achieved a CRT of < 250 µm at month 12. Results: 33 males (51%) and 32 females (49%) were initially recruited with an average age of 56.64 ± 13.88 years. Patients in the Conbercept and Conbercept + DEX groups gained an average of 14.55 ± 19.19 and 14.88 ± 17.68 ETDRS letters, respectively, at months 12 (t = 4.221, P = 0.000; and t = 4.834, P = 0.000) with no significant difference between the two groups (t = 0.071, P = 0.943). In the Conbercept group, the mean reduction in CRT from baseline to month 12 was 435.26 ± 293.37 µm (t = 8.261, P = 0.000) compared to 431.36 ± 294.55 (t = 8.413, P = 0.000) in the Conbercept + DEX group. There was no significant difference between the two groups (t = 0.053, P = 0.958). The Conbercept + DEX group received fewer intravitreal injections. No major complications occurred. Conclusion: Conbercept, alone or with DEX, can improve BCVA and reduce CRT in ME following CRVO without serious adverse events. The treatment interval was longer in the Conbercept + DEX group. Trial Registration: The study was registered with the Chinese Clinical Trial Registry at 5 July 2017. (http://www.chictr.org.cn, 05/07/2017 Registration Number: ChiCTR-INR-17011877).

3.
J Nucl Med ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991753

ABSTRACT

Brain PET imaging often faces challenges from head motion (HM), which can introduce artifacts and reduce image resolution, crucial in clinical settings for accurate treatment planning, diagnosis, and monitoring. United Imaging Healthcare has developed NeuroFocus, an HM correction (HMC) algorithm for the uMI Panorama PET/CT system, using a data-driven, statistics-based approach. The HMC algorithm automatically detects HM using a centroid-of-distribution technique, requiring no parameter adjustments. This study aimed to validate NeuroFocus and assess the prevalence of HM in clinical short-duration 18F-FDG scans. Methods: The study involved 317 patients undergoing brain PET scans, divided into 2 groups: 15 for HMC validation and 302 for evaluation. Validation involved patients undergoing 2 consecutive 3-min single-bed-position brain 18F-FDG scans-one with instructions to remain still and another with instructions to move substantially. The evaluation examined 302 clinical single-bed-position brain scans for patients with various neurologic diagnoses. Motion was categorized as small or large on the basis of a 5% SUV change in the frontal lobe after HMC. Percentage differences in SUVmean were reported across 11 brain regions. Results: The validation group displayed a large negative difference (-10.1%), with variation of 5.2% between no-HM and HM scans. After HMC, this difference decreased dramatically (-0.8%), with less variation (3.2%), indicating effective HMC application. In the evaluation group, 38 of 302 patients experienced large HM, showing a 10.9% ± 8.9% SUV increase after HMC, whereas most exhibited minimal uptake changes (0.1% ± 1.3%). The HMC algorithm not only enhanced the image resolution and contrast but also aided in disease identification and reduced the need for repeat scans, potentially optimizing clinical workflows. Conclusion: The study confirmed the effectiveness of NeuroFocus in managing HM in short clinical 18F-FDG studies on the uMI Panorama PET/CT system. It found that approximately 12% of scans required HMC, establishing HMC as a reliable tool for clinical brain 18F-FDG studies.

4.
Heliyon ; 10(12): e32679, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988578

ABSTRACT

The Internet of Things is based on the traditional Internet and its purpose is to achieve information exchange between users and devices, as well as between devices. The rapid development of sensor technology, communication network technology, and computer technology has enriched the coverage of the Internet of Things, including a wide range of intelligent applications such as healthcare, smart cities, and smart homes. The development of high-performance computing and machine learning technologies has promoted the wide application of intelligent auxiliary systems in sports medicine. With the rapid development of yoga in the field of sports, athletes can play the various functions of yoga, improve their physical strength and quality, and improve their strength, flexibility, etc., cultivate positive, optimistic, and healthy emotions, and these are conducive to rehabilitation treatment after sports injuries. Therefore, it is feasible and feasible to introduce yoga training into the monitoring of the exercise load of athletes. In this paper, neural network technology was used to break the traditional training method based on experience. Based on yoga training data, through experimental exercise research, it could explore a new effective way to monitor exercise load and rehabilitation treatment, and build an exercise load monitoring model of the Ant Colony Optimization (ACO) neural network. By sorting out the data, statistics and analysis of the data, this article confirmed the effect of yoga training on reducing fatigue after exercise. The experimental results showed that the prediction value obtained by the ACO neural network model was 9.106, and the error was only -0.003 compared to the actual detection value of 9.109. This result showed that the ACO neural network model can perfectly fit the functional relationship between yoga training level and exercise load and has high prediction accuracy. This also marked that the development of high-performance computing systems has entered a new journey in the field of sports and health.

5.
Materials (Basel) ; 17(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38893875

ABSTRACT

The sulfur in petroleum coke is harmful to carbon products, underscoring the importance of desulfurization for high-sulfur petroleum coke. This paper proposes a method combining alkaline catalytic roasting with ultrasonic oxidation for the deep desulfurization of high-sulfur petroleum coke. The results show that the desulfurization rate reaches 88.99% and the sulfur content is reduced to 0.83 wt.% under a coke particle size of 96-75 µm, sodium-hydroxide-to-petroleum-coke ratio of 50%, roasting temperature of 700 °C, and holding time of 2 h. The alkali-calcined petroleum coke is ultrasonically oxidized and desulfurized in peracetic acid. The results show that, under a hydrogen peroxide content of 10%, hydrogen-peroxide-(liquid)-to-petroleum-coke (solid) ratio of 20 mL/g, acetic acid content of 5 mL, ultrasonic power of 300 W, reaction temperature of 60 °C, and reaction duration of 4 h, the sulfur content is reduced to 0.15 wt.% and the total desulfurization reaches 98.01%. Through a series of characterizations, the proposed desulfurization mechanism is verified. Alkali roasting effectively removes a significant portion of sulfur in petroleum coke. However, the elimination of certain sulfur compounds, such as the more complex thiophene, presents challenges. The thiophene content is subsequently removed via ultrasonic oxidation.

6.
Future Oncol ; : 1-12, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38868921

ABSTRACT

Aim: This research aimed to construct a clinical model for forecasting the likelihood of lung metastases in differentiated thyroid carcinoma (DTC) with intermediate- to high-risk. Methods: In this study, 375 DTC patients at intermediate to high risk were included. They were randomly divided into a training set (70%) and a validation set (30%). A nomogram was created using the training group and then validated in the validation set using calibration, decision curve analysis (DCA) and receiver operating characteristic (ROC) curve. Results: The calibration curves demonstrated excellent consistency between the predicted and the actual probability. ROC analysis showed that the area under the curve in the training cohort was 0.865 and 0.845 in the validation cohort. Also, the DCA curve indicated that this nomogram had good clinical utility. Conclusion: A user-friendly nomogram was constructed to predict the lung metastases probability with a high net benefit.


[Box: see text].

7.
J Environ Manage ; 362: 121302, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824896

ABSTRACT

Two industrial solid wastes, Ti-bearing blast furnace slag (TBFS) and diamond wire saw silicon waste (DWSSW), contain large amounts of Ti and Si, and their accumulation wastes resources and intensifies environmental pollution. In the present study, DWSSW was used as the silicon source to reduce titanium oxide in TBFS by electromagnetic induction smelting, and meanwhile Na3AlF6 was added as a flux to improve the recycling of the wastes. Ti and Si of the two wastes were simultaneously recovered in the form of alloy. The effects of different addition amount of Na3AlF6 flux in the mixture of DWSSW and TBFS on chemical composition, viscosity, basicity and structure of slag were investigated. The dissolution behavior of SiO2 in Na3AlF6 flux was theoretically deduced and experimentally verification. The optimized recovery rate of Ti and Si were obtained, and the research realizes the efficient recycling of DWSSW and TBFS simultaneously.


Subject(s)
Alloys , Recycling , Silicon , Titanium , Titanium/chemistry , Silicon/chemistry , Alloys/chemistry , Diamond/chemistry , Industrial Waste/analysis
8.
Nat Genet ; 56(5): 1006-1017, 2024 May.
Article in English | MEDLINE | ID: mdl-38658793

ABSTRACT

Large-scale genomic variations are fundamental resources for crop genetics and breeding. Here we sequenced 1,904 genomes of broomcorn millet to an average of 40× sequencing depth and constructed a comprehensive variation map of weedy and cultivated accessions. Being one of the oldest cultivated crops, broomcorn millet has extremely low nucleotide diversity and remarkably rapid decay of linkage disequilibrium. Genome-wide association studies identified 186 loci for 12 agronomic traits. Many causative candidate genes, such as PmGW8 for grain size and PmLG1 for panicle shape, showed strong selection signatures during domestication. Weedy accessions contained many beneficial variations for the grain traits that are largely lost in cultivated accessions. Weedy and cultivated broomcorn millet have adopted different loci controlling flowering time for regional adaptation in parallel. Our study uncovers the unique population genomic features of broomcorn millet and provides an agronomically important resource for cereal crops.


Subject(s)
Crops, Agricultural , Genetic Variation , Genome, Plant , Genome-Wide Association Study , Linkage Disequilibrium , Crops, Agricultural/genetics , Panicum/genetics , Phenotype , Quantitative Trait Loci , Polymorphism, Single Nucleotide , Domestication , Genomics/methods , Plant Breeding
9.
Aesthet Surg J ; 44(7): NP486-NP500, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38518754

ABSTRACT

BACKGROUND: Induction of beige fat for grafting is an emerging transplantation strategy. However, safety concerns associated with pharmaceutical interventions limit its wider application. Moreover, because beige fat is a special type of fat with strong metabolic functions, its effect on the metabolism of recipients after grafting has not been explored in the plastic surgery domain. OBJECTIVES: The aim of this study was to explore whether cold-induced inguinal white adipose tissue (iWAT) transplantation has a higher retention rate and beneficial effects on recipient metabolism. METHODS: C57/BL6 mice were subjected to cold stimulation for 48 hours to induce the browning of iWAT and harvested immediately. Subsequently, each mouse received a transplant of 0.2 mL cold-induced iWAT or normal iWAT. Fat grafts and recipients' iWAT, epididymal adipose tissue, and brown adipose tissue were harvested at 8 weeks after operation. Immunofluorescence staining, real-time polymerase chain reaction, and western blot were used for histological and molecular analysis. RESULTS: Cold-induced iWAT grafting had a higher mean [standard error of the mean] retention rate (67.33% [1.74%] vs 55.83% [2.94%], P < .01) and more satisfactory structural integrity than normal iWAT. Histological changes identified improved adipose tissue homeostasis after cold challenge, including abundant smaller adipocytes, higher levels of adipogenesis, angiogenesis, and proliferation, but lower levels of fibrosis. More importantly, cold-induced iWAT grafting suppressed the inflammation of epididymal adipose tissue caused by conventional fat grafting, and activated the glucose metabolism and thermogenic activity of recipients' adipose tissues. CONCLUSIONS: Cold-induced iWAT grafting is an effective nonpharmacological intervention strategy to improve the retention rate and homeostasis of grafts. Furthermore, it improves the adverse effects caused by traditional fat grafting, while also conferring metabolic benefits.


Subject(s)
Adipose Tissue, Brown , Cold Temperature , Mice, Inbred C57BL , Subcutaneous Fat , Animals , Male , Subcutaneous Fat/transplantation , Subcutaneous Fat/metabolism , Mice , Adipose Tissue, Brown/transplantation , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Adipose Tissue, White/transplantation , Adipose Tissue, Beige/metabolism , Graft Survival
10.
Environ Sci Pollut Res Int ; 31(18): 27388-27402, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38512573

ABSTRACT

In aluminum electrolysis, the iron-rich cover material is formed on the cover material and the steel rod connecting the carbon anode. Due to the high iron content in the iron-rich cover material, it differs from traditional cover material and thus requires harmless recycling and treatment. A process was proposed and used in this study to recovery F, Al, and Fe elements from the iron-rich cover material. This process involved aluminum sulfate solution leaching for fluorine recovery and alkali-acid synergistic leaching for α-Al2O3 and Fe2O3 recovery were obtained. The optimal leaching rates for F, Na, Ca, Fe, and Si were 93.92, 96.25, 94.53, 4.48, and 28.87%, respectively. The leaching solution and leaching residue were obtained. The leaching solution was neutralized to obtain the aluminum hydroxide fluoride hydrate (AHFH, AlF1.5(OH)1.5·(H2O)0.375). AHFH was calcined to form a mixture of AlF3 and Al2O3 with a purity of 96.14%. The overall recovery rate of F in the entire process was 92.36%. Additionally, the leaching residue was sequentially leached with alkali and acid to obtain the acid leach residue α-Al2O3. The pH of the acid-leached solution was adjusted to produce a black-brown precipitate, which was converted to Fe2O3 under a high-temperature calcination, and the recovery rate of Fe in the whole process was 94.54%. Therefore, this study provides a new method for recovering F, Al, and Fe in iron-rich cover material, enabling the utilization of aluminum hazardous waste sources.


Subject(s)
Aluminum Oxide , Aluminum , Electrolysis , Ferric Compounds , Fluorides , Ferric Compounds/chemistry , Aluminum/chemistry , Fluorides/chemistry , Aluminum Oxide/chemistry , Iron/chemistry , Aluminum Compounds/chemistry , Recycling
11.
Sci Total Environ ; 920: 171065, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38373455

ABSTRACT

With global warming becoming increasingly severe, environmental issues are receiving international attention. Crystalline silicon is an indispensable and important raw material for photovoltaic and semiconductor fields, but the cutting of crystalline silicon materials generates a large amount of silicon wastes. This article evaluates the environmental impact of a hydrogen production process using diamond-wire sawing silicon waste (DSSW) using the life cycle assessment (LCA) methodology. For comparison, it was also analyzed the environmental impact of the alkaline water electrolysis (AEL) hydrogen production route. In the DSSW alkaline catalyzed hydrolysis (DACH) hydrogen production route, the hydrogen production stage accounts for the main contribution of nine environmental impact indexes, including GWP, PED, ADP, AP, EP, ODP, ET, HT-cancer, and HT-non cancer, exceeding 56 %. Whereas for the AEL route, the environmental impacts of the electrolytic cell manufacturing stage can be neglected, and the operating stage contributes almost all the environmental impacts, contributing more than 92 % to the twelve environmental impact indexes. Compared to the AEL route, the DACH route has higher environmental impacts, with GWP index reaching 87.78 kg CO2 -eq/kg H2, PED index reaching 1772.90 MJ/kg H2, and IWU index reaching 622.37 kg/kg H2 which are 2.85, 4.07 and 7.56 times higher than the former, respectively. Although the environmental impact of the DACH route is significant, most of its indirect impacts were caused by the use of raw materials, and the energy consumption and direct environmental impact are both low. The environmental impact of the AEL route is mainly indirect effects generated due to the use of electricity. If clean renewable energy sources (e.g., solar PV, hydropower, geothermal or biofuels), were used for the AEL route, all twelve environmental impact indexes would be significantly reduced.

12.
Nanomicro Lett ; 16(1): 130, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393483

ABSTRACT

Adopting a nano- and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy storage devices at all technology readiness levels. Due to various challenging issues, especially limited stability, nano- and micro-structured (NMS) electrodes undergo fast electrochemical performance degradation. The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement, even though it only occupies complementary and facilitating components for the main mechanism. However, extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies. This review will aim at highlighting these NMS scaffold design strategies, summarizing their corresponding strengths and challenges, and thereby outlining the potential solutions to resolve these challenges, design principles, and key perspectives for future research in this field. Therefore, this review will be one of the earliest reviews from this viewpoint.

13.
J Nucl Med ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388513

ABSTRACT

The uMI Panorama is a novel PET/CT system using silicon photomultiplier and application-specific integrated circuit technologies and providing exceptional spatial and time-of-flight (TOF) resolutions. The objective of this study was to assess the physical performance of the uMI Panorama in accordance with the National Electrical Manufacturers Association (NEMA) NU 2-2018 standard. Methods: Spatial resolution, sensitivity, count rate performance, accuracy, image quality, and TOF resolution were evaluated in accordance with the guidelines outlined in the NEMA NU 2-2018 standard. Energy resolution was determined using the same dataset acquired for the count rate performance evaluation. Images from a Hoffman brain phantom, a mini-Derenzo phantom, and 3 patient studies were evaluated to demonstrate system performance. Results: The transaxial spatial resolution at full width at half maximum was measured as 2.88 mm with a 1-cm offset from the center axial field of view. The sensitivity at the center axial field of view was 20.1 kcps/MBq. At an activity concentration of 73.0 kBq/mL, the peak noise-equivalent count rate (NECR) reached 576 kcps with a scatter fraction of approximately 33.2%. For activity concentrations at or below the peak NECR, the maximum relative count rate error among all slices remained consistently below 3%. When assessed using the NEMA image quality phantom, overall image contrast recovery ranged from 63.2% to 88.4%, whereas background variability ranged from 4.2% to 1.1%. TOF resolution was 189 ps at 5.3 kBq/mL and was consistently lower than 200 ps for activity concentrations at or below the peak NECR. The patient studies demonstrated that scans at 2 min/bed produced images characterized by low noise and high contrast. Clear delineation of nuclei, spinal cords, and other substructures of the brain was observed in the brain PET images. Conclusion: uMI Panorama, the world's first commercial PET system with sub-200-ps TOF resolution, demonstrated fine spatial and fast TOF resolutions, robust count rate performance, and high quantification accuracy across a wide range of activity levels. This advanced technology offers enhanced diagnostic capability for detecting small and low-contrast lesions while showing promising potential under high-count-rate imaging scenarios.

14.
BMC Infect Dis ; 24(1): 214, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38369460

ABSTRACT

BACKGROUND: Application of accumulated experience and management measures in the prevention and control of coronavirus disease 2019 (COVID-19) has generally depended on the subjective judgment of epidemic intensity, with the quality of prevention and control management being uneven. The present study was designed to develop a novel risk management system for COVID-19 infection in outpatients, with the ability to provide accurate and hierarchical control based on estimated risk of infection. METHODS: Infection risk was estimated using an auto regressive integrated moving average model (ARIMA). Weekly surveillance data on influenza-like-illness (ILI) among outpatients at Xuanwu Hospital Capital Medical University and Baidu search data downloaded from the Baidu Index in 2021 and 22 were used to fit the ARIMA model. The ability of this model to estimate infection risk was evaluated by determining the mean absolute percentage error (MAPE), with a Delphi process used to build consensus on hierarchical infection control measures. COVID-19 control measures were selected by reviewing published regulations, papers and guidelines. Recommendations for surface sterilization and personal protection were determined for low and high risk periods, with these recommendations implemented based on predicted results. RESULTS: The ARIMA model produced exact estimates for both the ILI and search engine data. The MAPEs of 20-week rolling forecasts for these datasets were 13.65% and 8.04%, respectively. Based on these two risk levels, the hierarchical infection prevention methods provided guidelines for personal protection and disinfection. Criteria were also established for upgrading or downgrading infection prevention strategies based on ARIMA results. CONCLUSION: These innovative methods, along with the ARIMA model, showed efficient infection protection for healthcare workers in close contact with COVID-19 infected patients, saving nearly 41% of the cost of maintaining high-level infection prevention measures and enhancing control of respiratory infections.


Subject(s)
COVID-19 , Cross Infection , Virus Diseases , Humans , Cross Infection/epidemiology , Cross Infection/prevention & control , Outpatients , Infection Control
15.
Int Nurs Rev ; 71(1): 180-188, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37335580

ABSTRACT

AIM: To perform a meta-analysis of randomized controlled trials to investigate the effect of nurse-led education on death, readmission, and quality of life in patients with heart failure. BACKGROUND: The evidence of the effectiveness of nurse-led education in heart failure patients from randomized controlled trials is limited, and the results are inconsistent. Therefore, the impact of nurse-led education remains poorly understood, and more rigorous studies are needed. INTRODUCTION: Heart failure is a syndrome associated with high morbidity, mortality, and hospital readmission. Authorities advocate nurse-led education to raise awareness of disease progression and treatment planning, as this could improve patients' prognosis. METHODS: PubMed, Embase, and the Cochrane Library were searched up to May 2022 to retrieve relevant studies. The primary outcomes were readmission rate (all-cause or HF-related) and all-cause mortality. The secondary outcome was quality of life, evaluated by the Minnesota Living with Heart Failure Questionnaire (MLHFQ), EuroQol-5D (EQ-5D), and visual analog scale for quality of life. RESULTS: Although there was no significant association between the nursing intervention and all-cause readmissions [RR (95% CI) = 0.91 (0.79, 1.06), P = 0.231], the nursing intervention decreased HF-related readmission by 25% [RR (95% CI) = 0.75 (0.58, 0.99), P = 0.039]. The e nursing intervention reduced all-cause readmission or mortality as a composite endpoint by 13% [RR (95% CI) = 0.87 (0.76, 0.99), P = 0.029]. In the subgroup analysis, we found that home nursing visits reduced HF-related readmissions [RR (95% CI) = 0.56 (0.37, 0.84), P = 0.005]. In addition, the nursing intervention improved the quality of life in MLHFQ and EQ-5D [standardized mean differences (SMD) (95% CI) = 3.38 (1.10, 5.66), 7.12 (2.54, 11.71), respectively]. DISCUSSION: The outcome variation between studies may be due to reporting methods, comorbidities, and medication management education. Patient outcomes and quality of life may also vary between different educational approaches. Limitations of this meta-analysis stem from the incomplete reporting of information from the original studies, the small sample size, and the inclusion of English language literature only. CONCLUSION: Nurse-led education programs significantly impact HF-related readmission rates, all-cause readmission, and mortality rates in patients with HF. IMPLICATIONS FOR NURSING PRACTICE AND NURSING POLICIES: The results suggest stakeholders should allocate resources to develop nurse-led education programs for HF patients.


Subject(s)
Heart Failure , Quality of Life , Humans , Nurse's Role , Heart Failure/therapy , Patient Readmission , Prognosis
16.
Gene ; 897: 148075, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38086454

ABSTRACT

To solve the high mortality rate of early-stage larval feed conversion during aquaculture in Oplegnathus punctatus, the investigation of the structural and functional characteristics of the gastric tissue was conducted. Histological results showed that the gastric gland rudiment appeared at 17 dph. The basic structure of the stomach was fully developed between 26 and 35 dph. Two pepsinogen genes, named OpPGA1 and OpPGA2, were identified in the spotted knifejaw genome. qPCR results of developmental period showed that the two genes were low in expression during early development (5 and 15 dph). At 20 dph, the two genes started to show trace expression, and at 30 dph the mRNA expression levels of OpPGA1 and OpPGA2 reached the highest levels. Results of pepsin activity detection during the development period showed lower activity was detected 22 dph, followed by a peak at 30 dph. Under different feeding inductions, OpPGA1 showed the highest expression in the basic diet group and hard-shell group, while the expression level in the phytophagous group remained consistently low. The mRNA expression level of OpPGA2 in the phytophagous group was significantly higher than in other groups. Enzyme activity determination under different feeding inductions showed slightly higher enzyme activity in the basic diet group and crustacean group. The results of in situ hybridization showed that the mRNA of both OpPGA1 and OpPGA2 genes was both expressed in gastric gland cells. These information can contribute to the development of practical feeding methods in terms of digestive physiology for the development of larvae.


Subject(s)
Fishes , Pepsinogen A , Animals , Pepsinogen A/genetics , Pepsinogen A/metabolism , Fishes/genetics , Stomach , Larva/genetics , Larva/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
17.
Nanoscale ; 15(48): 19557-19568, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37990790

ABSTRACT

The instability of perovskite solar cells (PSCs) is primarily caused by the unavoidable ion migration in the perovskite layer. Ion migration and accumulation influence the properties of perovskite and functional layers, resulting in severely degraded device performance. Herein, we introduced an n-type, low optical gap-conjugated organic molecule (i.e., COTIC-4F or COTIC-4Cl) to serve as the perovskite photoactive layer in a perovskite precursor solution for broadening the near-infrared spectral response and enhancing the efficiency of PSCs. Various characterization studies have determined that COTIC-4F forms hydrogen bonds with perovskites, thereby remarkably enhancing the anchoring ability of MA+, suppressing ion migration, and reducing photocurrent hysteresis. Meanwhile, the carbonyl (CO) group of COTIC-4F and COTIC-4Cl can donate a lone electron pair to passivate the Pb trap, avoiding possible carrier recombination. The COTIC-4F- and COTIC-4Cl-treated perovskite films exhibit an optical response in the near-infrared region and an excellent morphology. Through ultraviolet photoelectron spectroscopy, it has been determined that COTIC-4F can facilitate more charge transfer than COTIC-4Cl, which results in a larger photocurrent from the PSCs. The PSCs of the COTIC-4F-treated perovskite films demonstrate a maximum power conversion efficiency of 21.72%. They exhibit a high fill factor of 82.02% and possess long-term stability under an air atmosphere.

18.
J Nucl Med ; 64(12): 1880-1888, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37827842

ABSTRACT

Kirsten rat sarcoma (KRAS) mutations are an important marker for tumor-targeted therapy. In this study, we sought to develop a KRASG12C oncoprotein-targeted PET tracer and to evaluate its translational potential for noninvasive imaging of the KRASG12C mutation in non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) patients. Methods: [18F]PFPMD was synthesized on the basis of AMG510 (sotorasib) by attaching a polyethylene glycol chain to the quinazolinone structure. The binding selectivity and imaging potential of [18F]PFPMD were verified by cellular uptake, internalization, and blocking (H358: KRASG12C mutation; A549: non-KRASG12C mutation) studies, as well as by a small-animal PET/CT imaging study on tumor-bearing mice. Five healthy volunteers were enrolled to assess the safety, biodistribution, and dosimetry of [18F]PFPMD. Subsequently, 14 NSCLC or CRC patients with or without the KRASG12C mutation underwent [18F]PFPMD and [18F]FDG PET/CT imaging. The SUVmax of tumor uptake of [18F]PFPMD was measured and compared between patients with and without the KRASG12C mutation. Results: [18F]PFPMD was obtained with a high radiochemical yield, radiochemical purity, and stability. The protein-binding assay showed that [18F]PFPMD selectively binds to the KRASG12C protein. [18F]PFPMD uptake was significantly higher in H358 than in A549 and was decreased by pretreatment with AMG510 (H358 vs. A549: 3.22% ± 0.28% vs. 2.50% ± 0.25%, P < 0.05; block: 2.06% ± 0.13%, P < 0.01). Similar results were observed in tumor-bearing mice on PET imaging (H358 vs. A549: 3.93% ± 0.24% vs. 2.47% ± 0.26% injected dose/g, P < 0.01; block: 2.89% ± 0.29% injected dose/g; P < 0.05). [18F]PFPMD was safe in humans and was excreted primarily by the gallbladder and intestines. The whole-body effective dose was comparable to that of [18F]FDG. The accumulation of [18F]PFPMD in KRASG12C mutation tumors was significantly higher than that in non-KRASG12C mutation tumors (SUVmax: 3.73 ± 0.58 vs. 2.39 ± 0.22, P < 0.01) in NSCLC and CRC patients. Conclusion: [18F]PFPMD is a safe and promising PET tracer for noninvasive screening of the KRASG12C mutation status in NSCLC and CRC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Colorectal Neoplasms , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Positron Emission Tomography Computed Tomography , Proto-Oncogene Proteins p21(ras)/genetics , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Fluorodeoxyglucose F18/therapeutic use , Tissue Distribution , Positron-Emission Tomography , Mutation , Lung/pathology , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/genetics
19.
Waste Manag ; 171: 237-247, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37678072

ABSTRACT

Spent automotive catalysts (SACs) and diamond-wire-saw silicon kerf (DWSSK) are classified as hazardous wastes. Currently, the two wastes are treated separately using unrelated approaches. More than two independent approaches are required to recover platinum group metals (PGMs), Zr and rare earth elements (REEs) from SACs, and recover Si from DWSSK, which is time-consuming and laborious. In this study, a new approach was proposed to co-treat the two wastes based on the concept of using waste treats waste: using DWSSK (∼89.85 wt% Si) as a new metal collector to extract PGMs, REEs, and Zr simultaneously from SACs to obtain a Si-VM alloy (VM: valuable metal); meanwhile, using the carrier of SACs to form molten slag to eliminate the main impurity, O, from DWSSK. The largest recovery ratios of Pd, Rh, Zr, Ce, La, and Nd from SACs were 99.50 ± 0.10%, 99.14 ± 0.14 %, 96.19 ± 0.76%, 67.18 ± 4.57%, 61.24 ± 4.93% and 47.65 ± 7.27%, respectively, and the largest removal ratio of O from DWSSK was 99.96%. After smelting, the Si-VM alloy was separated into high-purity Si and VM-containing acid solutions via acid leaching. The leaching ratios of Pd, Rh, Ce, La, Nd, and Zr were 99.78%, 98.15%, 99.93%, ∼100%, 99.76% and 99.98%, respectively. The purity of Si was upgraded from 89.85 wt% (in DWSSK) to 99.98 wt% after acid leaching. The new approach proposed in this study is considered more environmentally friendly and cost-effective than the regular approaches that treat the two wastes separately.

20.
Mol Imaging Biol ; 25(5): 857-866, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37407745

ABSTRACT

PURPOSE: This study aims to compare the diagnostic efficacy of 68Ga-FAPI-04 PET and 18F-FDG PET for detecting anastomotic recurrence in postoperative patients with gastrointestinal cancer, and to characterize the signal pattern over time at surgical wounds on both PET imaging. METHODS: Gastrointestinal cancer patients who planned to 68Ga-FAPI-04 and 18F-FDG PET/CT imaging for postoperative surveillance were involved. The SUVmax at surgical wounds were assessed. Endoscopic pathology confirmed anastomotic recurrence or it was ruled out by imaging and clinical follow-up. The sensitivity, specificity, positive and negative predictive values (PPV and NPV), and accuracy of the two PET imaging in detecting anastomotic recurrence were compared. Relationships between tracer uptake at surgical wounds and postoperative time were also analyzed. RESULTS: Compared with non-recurrent patients, the recurrent patients exhibited a significantly higher anastomotic SUVmax on 68Ga-FAPI-04 PET (SUVmax: 9.92 ± 4.36 vs. 2.81 ± 1.86, P = 0.002). Sensitivity, specificity, PPV, NPV, and accuracy of detecting anastomotic recurrence were 100.0%, 87.3%, 41.7%, 100.0%, and 88.3% for 68Ga-FAPI-04 PET, and 60.0%, 81.8%, 23.1%, 95.7%, and 80.0% for 18F-FDG PET, respectively. Although 68Ga-FAPI-04 PET signal at surgical wounds showed a slight trend to decrease with time, no statistical difference was observed over months post-surgery (P > 0.05). CONCLUSIONS: Both tracers displayed high NPVs in identifying anastomotic recurrence with a higher sensitivity to 68Ga-FAPI-04. Tracer uptake at anastomotic sites does not decrease significantly over time, which results in low PPVs for both PET. Therefore, it is difficult to differentiate anastomotic recurrence from inflammation on either PET imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...