Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 363
Filter
1.
Biol Res ; 57(1): 36, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822414

ABSTRACT

BACKGROUND: Helicase for meiosis 1 (HFM1), a putative DNA helicase expressed in germ-line cells, has been reported to be closely associated with premature ovarian insufficiency (POI). However, the underlying molecular mechanism has not been clearly elucidated. The aim of this study was to investigate the function of HFM1 in the first meiotic prophase of mouse oocytes. RESULTS: The results suggested that the deficiency of HFM1 resulting in increased apoptosis and depletion of oocytes in mice, while the oocytes were arrested in the pachytene stage of the first meiotic prophase. In addition, impaired DNA double-strand break repair and disrupted synapsis were observed in the absence of HFM1. Further investigation revealed that knockout of HFM1 promoted ubiquitination and degradation of FUS protein mediated by FBXW11. Additionally, the depletion of HFM1 altered the intranuclear localization of FUS and regulated meiotic- and oocyte development-related genes in oocytes by modulating the expression of BRCA1. CONCLUSIONS: These findings elaborated that the critical role of HFM1 in orchestrating the regulation of DNA double-strand break repair and synapsis to ensure meiosis procession and primordial follicle formation. This study provided insights into the pathogenesis of POI and highlighted the importance of HFM1 in maintaining proper meiotic function in mouse oocytes.


Subject(s)
Meiotic Prophase I , Oocytes , Ubiquitination , Animals , Oocytes/metabolism , Meiotic Prophase I/physiology , Female , Mice , DNA Breaks, Double-Stranded , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Meiosis/physiology , DNA Repair/physiology , Mice, Knockout , Apoptosis/physiology
2.
J Transl Med ; 22(1): 422, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702814

ABSTRACT

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is a highly malignant neoplasm and characterized by desmoplastic matrix. The heterogeneity and crosstalk of tumor microenvironment remain incompletely understood. METHODS: To address this gap, we performed Weighted Gene Co-expression Network Analysis (WGCNA) to identify and construct a cancer associated fibroblasts (CAFs) infiltration biomarker. We also depicted the intercellular communication network and important receptor-ligand complexes using the single-cell transcriptomics analysis of tumor and Adjacent normal tissue. RESULTS: Through the intersection of TCGA DEGs and WGCNA module genes, 784 differential genes related to CAFs infiltration were obtained. After a series of regression analyses, the CAFs score was generated by integrating the expressions of EVA1A, APBA2, LRRTM4, GOLGA8M, BPIFB2, and their corresponding coefficients. In the TCGA-CHOL, GSE89748, and 107,943 cohorts, the high CAFs score group showed unfavorable survival prognosis (p < 0.001, p = 0.0074, p = 0.028, respectively). Additionally, a series of drugs have been predicted to be more sensitive to the high-risk group (p < 0.05). Subsequent to dimension reduction and clustering, thirteen clusters were identified to construct the single-cell atlas. Cell-cell interaction analysis unveiled significant enhancement of signal transduction in tumor tissues, particularly from fibroblasts to malignant cells via diverse pathways. Moreover, SCENIC analysis indicated that HOXA5, WT1, and LHX2 are fibroblast specific motifs. CONCLUSIONS: This study reveals the key role of fibroblasts - oncocytes interaction in the remodeling of the immunosuppressive microenvironment in intrahepatic cholangiocarcinoma. Subsequently, it may trigger cascade activation of downstream signaling pathways such as PI3K-AKT and Notch in tumor, thus initiating tumorigenesis. Targeted drugs aimed at disrupting fibroblasts-tumor cell interaction, along with associated enrichment pathways, show potential in mitigating the immunosuppressive microenvironment that facilitates tumor progression.


Subject(s)
Bile Duct Neoplasms , Cancer-Associated Fibroblasts , Cholangiocarcinoma , Gene Expression Regulation, Neoplastic , Single-Cell Analysis , Tumor Microenvironment , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Humans , Tumor Microenvironment/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Prognosis , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/metabolism , Transcriptome/genetics , Gene Expression Profiling , Gene Regulatory Networks , Cell Communication
3.
Anal Methods ; 16(20): 3220-3230, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38717230

ABSTRACT

Tuberculosis caused by Mycobacterium bovis poses a global infectious threat to humans and animals. Therefore, there is an urgent need to develop a sensitive, precise, and easy-to-readout strategy. Here, a novel tandem combination of a CRISPR/Cas12a system with dual HCR (denoted as CRISPR/Cas12a-D-HCR) was constructed for detecting Mycobacterium bovis. Based on the efficient trans-cleavage activity of the active CRISPR/Cas12a system, tandem-dsDNA with PAM sites was established using two flexible hairpins, providing multiple binding sites with CRISPR/Cas12a for further amplification. Furthermore, the activation of Cas12a initiated the second hybridization chain reaction (HCR), which integrated complete G-quadruplex sequences to assemble the hemin/G-quadruplex DNAzyme. With the addition of H2O2 and ABTS, a colorimetric signal readout strategy was achieved. Consequently, CRISPR/Cas12a-D-HCR achieved a satisfactory detection linear range from 20 aM to 50 fM, and the limit of detection was as low as 2.75 aM with single mismatched recognition capability, demonstrating good discrimination of different bacterial species. Notably, the practical application performance was verified via the standard addition method, with the recovery ranging from 96.0% to 105.2% and the relative standard deviations (RSD) ranging from 0.95% to 6.45%. The proposed CRISPR/Cas12a-D-HCR sensing system served as a promising application for accurate detection in food safety and agricultural fields.


Subject(s)
CRISPR-Cas Systems , Colorimetry , G-Quadruplexes , Mycobacterium bovis , Mycobacterium bovis/genetics , CRISPR-Cas Systems/genetics , Colorimetry/methods , Nucleic Acid Hybridization/methods , Limit of Detection , Animals , DNA, Catalytic/chemistry , Biosensing Techniques/methods , CRISPR-Associated Proteins/genetics , DNA, Bacterial/genetics
4.
Viruses ; 16(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38793560

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV), a member of the Arteriviridae family, represents a persistent menace to the global pig industry, causing reproductive failure and respiratory disease in pigs. In this study, we delved into the role of histone deacetylases (HDAC2) during PRRSV infection. Our findings revealed that HDAC2 expression is downregulated upon PRRSV infection. Notably, suppressing HDAC2 activity through specific small interfering RNA led to an increase in virus production, whereas overexpressing HDAC2 effectively inhibited PRRSV replication by boosting the expression of IFN-regulated antiviral molecules. Furthermore, we identified the virus's nonstructural protein 11 (nsp11) as a key player in reducing HDAC2 levels. Mutagenic analyses of PRRSV nsp11 revealed that its antagonistic effect on the antiviral activity of HDAC2 is dependent on its endonuclease activity. In summary, our research uncovered a novel immune evasion mechanism employed by PRRSV, providing crucial insights into the pathogenesis of this virus and guiding the development of innovative prevention strategies against PRRSV infection.


Subject(s)
Endoribonucleases , Histone Deacetylase 2 , Immune Evasion , Immunity, Innate , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , Virus Replication , Porcine respiratory and reproductive syndrome virus/immunology , Porcine respiratory and reproductive syndrome virus/genetics , Animals , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Swine , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/immunology , Endoribonucleases/metabolism , Endoribonucleases/genetics , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , Cell Line , Humans
5.
Vet Res ; 55(1): 56, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715098

ABSTRACT

The chemokine CXCL8, also known as the neutrophil chemotactic factor, plays a crucial role in mediating inflammatory responses and managing cellular immune reactions during viral infections. Porcine reproductive and respiratory syndrome virus (PRRSV) primarily infects pulmonary alveolar macrophages (PAMs), leading to acute pulmonary infections. In this study, we explored a novel long non-coding RNA (lncRNA), termed lnc-CAST, situated within the Cxcl8 gene locus. This lncRNA was found to be highly expressed in porcine macrophages. We observed that both lnc-CAST and CXCL8 were significantly upregulated in PAMs following PRRSV infection, and after treatments with lipopolysaccharide (LPS) or lipoteichoic acid (LTA). Furthermore, we noticed a concurrent upregulation of lnc-CAST and CXCL8 expression in lungs of PRRSV-infected pigs. We then determined that lnc-CAST positively influenced CXCL8 expression in PAMs. Overexpression of lnc-CAST led to an increase in CXCL8 production, which in turn enhanced the migration of epithelial cells and the recruitment of neutrophils. Conversely, inhibiting lnc-CAST expression resulted in reduced CXCL8 production in PAMs, leading to decreased migration levels of epithelial cells and neutrophils. From a mechanistic perspective, we found that lnc-CAST, localized in the nucleus, facilitated the enrichment of histone H3K27ac in CXCL8 promoter region, thereby stimulating CXCL8 transcription in a cis-regulatory manner. In conclusion, our study underscores the pivotal critical role of lnc-CAST in regulating CXCL8 production, offering valuable insights into chemokine regulation and lung damage during PRRSV infection.


Subject(s)
Histones , Interleukin-8 , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , RNA, Long Noncoding , Animals , Swine , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Porcine respiratory and reproductive syndrome virus/physiology , Interleukin-8/metabolism , Interleukin-8/genetics , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/virology , Histones/metabolism , Histones/genetics , Macrophages, Alveolar/virology , Macrophages, Alveolar/metabolism , Gene Expression Regulation
6.
Plant Sci ; 345: 112107, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38685455

ABSTRACT

Programmed cell death (PCD) is an important factor to reduces the viability of plant germplasm after cryopreservation. However, the pathways by which PCD occurs is not fully understood. To investigate whether there is a mitochondrial pathway for pollen PCD after cryopreservation, the pollen of Paeonia lactiflora two cultivars with different PCD levels after cryopreservation was used as test material and the changes of mitochondrial calcium ions (Ca2+), structure, function and their relationship with PCD were compared. The results showed that compared with fresh pollen, the PCD of 'Feng Huang Nie Pan' was significantly reduced after cryopreservation. Their mitochondrial Ca2+ content decreased by 74.27%, mitochondrial permeability transition pore (MPTP) opening reduced by 25.41%, mitochondrial membrane potential slightly decreased by 5.02%, cardiolipin oxidation decreased by 65.31%, and oxygen consumption remained stable, with a slightly ATP production increase. On the contrary, compared with fresh pollen, 'Zi Feng Chao Yang' showed severe PCD after cryopreservation. The decline in mitochondrial Ca2+-ATPase activity led to an accumulation of excessive Ca2+ within mitochondria, triggering widespread opening of MPTP, significantly affecting mitochondrial respiration and energy synthesis. These results suggest the mitochondrial pathway of PCD exists in pollen cryopreservation.

7.
J Control Release ; 370: 66-81, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38631490

ABSTRACT

Renal ischemia-reperfusion injury (IRI) is one of the most important causes of acute kidney injury (AKI). Interleukin (IL)-37 has been suggested as a novel anti-inflammatory factor for the treatment of IRI, but its application is still limited by its low stability and delivery efficiency. In this study, we reported a novel engineered method to efficiently and easily prepare neutrophil membrane-derived vesicles (N-MVs), which could be utilized as a promising vehicle to deliver IL-37 and avoid the potential side effects of neutrophil-derived natural extracellular vesicles. N-MVs could enhance the stability of IL-37 and targetedly deliver IL-37 to damaged endothelial cells of IRI kidneys via P-selectin glycoprotein ligand-1 (PSGL-1). In vitro and in vivo evidence revealed that N-MVs encapsulated with IL-37 (N-MV@IL-37) could inhibit endothelial cell apoptosis, promote endothelial cell proliferation and angiogenesis, and decrease inflammatory factor production and leukocyte infiltration, thereby ameliorating renal IRI. Our study establishes a promising delivery vehicle for the treatment of renal IRI and other endothelial damage-related diseases.

8.
Cancer Sci ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613253

ABSTRACT

Peripheral T-cell lymphoma (PTCL) is a highly aggressive type of non-Hodgkin's lymphoma with a poor prognosis. Pyroptosis is a newly discovered procedural cell death mode, which has been implicated to occur in both tumor cells and immune cells. However, the occurrence and effect of pyroptosis on PTCL remain unclear. Here, we found that pyroptosis occurred in interstitial macrophages of PTCL rather than in tumor cells. In clinical specimens, macrophage pyroptosis was associated with a poor prognosis of PTCL. In vitro experiments and gene sequencing results showed that pyroptotic macrophages could upregulate the expression of TLR4 through secreting inflammatory cytokines IL-18. Upregulated TLR4 activated its downstream NF-κB anti-apoptotic signaling pathway, thus leading to malignant proliferation and chemotherapy resistance of tumor cells. Moreover, the expression of factors such as XIAP in the NF-κB anti-apoptotic pathway was downregulated after the knockdown of TLR4, and the malignant promotion effect of pyroptotic macrophages on PTCL cells was also reversed. Our findings revealed the mechanism of pyroptotic macrophages promoting the malignant biological behavior of PTCL and elucidated the key role of TLR4 in this process. In-depth analysis of this mechanism will contribute to understanding the regulatory effect of PTCL by the tumor microenvironment and providing new ideas for the clinical treatment of PTCL.

9.
Front Microbiol ; 15: 1361860, 2024.
Article in English | MEDLINE | ID: mdl-38585699

ABSTRACT

Lactic acid bacteria (LAB) belong to a significant group of probiotic bacteria that provide hosts with considerable health benefits. Our previous study showed that pigs with abundant LAB had more robust immune responses in a vaccination experiment. In this study, 52 isolate strains were isolated from the pigs with superior immune responses. Out of these, 14 strains with higher antibacterial efficacy were chosen. We then assessed the probiotic features of the 14 LAB strains, including such as autoaggregation, coaggregation, acid resistance, bile salt resistance, and adhesion capability, as well as safety aspects such as antibiotic resistance, hemolytic activity, and the presence or absence of virulence factors. We also compared these properties with those of an opportunistic pathogen EB1 and two commercial probiotics (cLA and cLP). The results showed that most LAB isolates exhibited higher abilities of aggregation, acid and bile salt resistance, adhesion, and antibacterial activity than the two commercial probiotics. Out of the 14 strains, only LS1 and LS9 carried virulence genes and none had hemolytic activity. We selected three LAB strains (LA6, LR6 and LJ1) with superior probiotic properties and LS9 with a virulence gene for testing their safety in vivo. Strains EB1, cLA and cLP were also included as control bacteria. The results demonstrated that mice treated LAB did not exhibit any adverse effects on weight gain, organ index, blood immune cells, and ileum morphology, except for those treated with LS9 and EB1. Moreover, the antimicrobial effect of LR6 and LA6 strains was examined in vivo. The results indicated that these strains could mitigate the inflammatory response, reduce bacterial translocation, and alleviate liver, spleen, and ileum injury caused by Salmonella typhimurium infection. In addition, the LR6 treatment group showed better outcomes than the LA6 treatment group; treatment with LR6 substantially reduced the mortality rate in mice. The study results provide evidence of the probiotic properties of the LAB isolates, in particular LR6, and suggest that oral administration of LR6 could have valuable health-promoting benefits.

10.
Nat Commun ; 15(1): 3612, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684664

ABSTRACT

The etiopathogenesis of diverticulitis, among the most common gastrointestinal diagnoses, remains largely unknown. By leveraging stool collected within a large prospective cohort, we performed shotgun metagenomic sequencing and untargeted metabolomics profiling among 121 women diagnosed with diverticulitis requiring antibiotics or hospitalizations (cases), matched to 121 women without diverticulitis (controls) according to age and race. Overall microbial community structure and metabolomic profiles differed in diverticulitis cases compared to controls, including enrichment of pro-inflammatory Ruminococcus gnavus, 1,7-dimethyluric acid, and histidine-related metabolites, and depletion of butyrate-producing bacteria and anti-inflammatory ceramides. Through integrated multi-omic analysis, we detected covarying microbial and metabolic features, such as Bilophila wadsworthia and bile acids, specific to diverticulitis. Additionally, we observed that microbial composition modulated the protective association between a prudent fiber-rich diet and diverticulitis. Our findings offer insights into the perturbations in inflammation-related microbial and metabolic signatures associated with diverticulitis, supporting the potential of microbial-based diagnostics and therapeutic targets.


Subject(s)
Diverticulitis , Feces , Gastrointestinal Microbiome , Humans , Female , Middle Aged , Diverticulitis/metabolism , Diverticulitis/microbiology , Feces/microbiology , Aged , Prospective Studies , Bilophila/metabolism , Metabolomics , Case-Control Studies , Clostridiales/metabolism , Clostridiales/isolation & purification , Bile Acids and Salts/metabolism , Adult , Dietary Fiber/metabolism , Metabolome , Metagenomics/methods
11.
12.
Mol Cancer ; 23(1): 65, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38532427

ABSTRACT

BACKGROUND: Abnormal angiogenesis is crucial for gallbladder cancer (GBC) tumor growth and invasion, highlighting the importance of elucidating the mechanisms underlying this process. LncRNA (long non-coding RNA) is widely involved in the malignancy of GBC. However, conclusive evidence confirming the correlation between lncRNAs and angiogenesis in GBC is lacking. METHODS: LncRNA sequencing was performed to identify the differentially expressed lncRNAs. RT-qPCR, western blot, FISH, and immunofluorescence were used to measure TRPM2-AS and NOTCH1 signaling pathway expression in vitro. Mouse xenograft and lung metastasis models were used to evaluate the biological function of TRPM2-AS during angiogenesis in vivo. EDU, transwell, and tube formation assays were used to detect the angiogenic ability of HUVECs. RIP, RAP, RNA pull-down, dual-luciferase reporter system, and mass spectrometry were used to confirm the interaction between TRPM2-AS, IGF2BP2, NUMB, and PABPC1. RESULTS: TRPM2-AS was upregulated in GBC tissues and was closely related to angiogenesis and poor prognosis in patients with GBC. The high expression level and stability of TRPM2-AS benefited from m6A modification, which is recognized by IGF2BP2. In terms of exerting pro-angiogenic effects, TRPM2-AS loaded with exosomes transported from GBC cells to HUVECs enhanced PABPC1-mediated NUMB expression inhibition, ultimately promoting the activation of the NOTCH1 signaling pathway. PABPC1 inhibited NUMB mRNA expression through interacting with AGO2 and promoted miR-31-5p and miR-146a-5p-mediated the degradation of NUMB mRNA. The NOTCH signaling pathway inhibitor DAPT inhibited GBC tumor angiogenesis, and TRPM2-AS knockdown enhanced this effect. CONCLUSIONS: TRPM2-AS is a novel and promising biomarker for GBC angiogenesis that promotes angiogenesis by facilitating the activation of the NOTCH1 signaling pathway. Targeting TRPM2-AS opens further opportunities for future GBC treatments.


Subject(s)
Carcinoma in Situ , Gallbladder Neoplasms , MicroRNAs , RNA, Long Noncoding , TRPM Cation Channels , Humans , Animals , Mice , Gallbladder Neoplasms/genetics , RNA, Long Noncoding/genetics , MicroRNAs/genetics , TRPM Cation Channels/metabolism , Angiogenesis , Cell Line, Tumor , Signal Transduction , RNA, Messenger , Cell Proliferation , Receptor, Notch1/metabolism , RNA-Binding Proteins/metabolism
13.
Updates Surg ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436922

ABSTRACT

The platelet to lymphocyte ratio (PLR) is the marker of host inflammation and it is a potential significant prognostic indicator in various different tumors. The serum carbohydrate antigen 19-9 (CA19-9) is a tumor-associated antigen and it is associated with poor prognosis of gallbladder cancer (GBC). We aimed to analyze the prognostic value of the combination of preoperative PLR and CA19-9 in patients with GBC. A total of 287 GBC patients who underwent curative surgery in our institution was included. To analyze the relationship between PLR and CA19-9 and clinicopathological features. A receiver operating characteristic (ROC) curve was used to identify the optimal cutoff value for PLR and CA19-9. The Kaplan-Meier method was used to estimate the overall survival (OS). Meanwhile, the univariate and multivariate Cox regression models were used to assess the risk factors for OS. The cutoff values of 146.82 and 36.32U/ml defined as high PLR and high CA19-9, respectively. Furthermore, survival analysis showed that patients with PLR > 146.82 and CA19-9 > 36.32 U/ml had a worse prognosis than patients with PLR ≤ 146.82 and CA19-9 ≤ 36.32 U/ml, respectively. The multivariate analysis demonstrated that PLR (hazard ratio (HR) = 1.863, 95% CI: 1.366-2.542, P < 0.001) and CA19-9 (HR = 1.412, 95% CI: 1.021-1.952, P = 0.037) were independent prognostic factors in the GBC patients. When we combined these two parameters, the area under the ROC curve increased from 0.624 (PLR) and 0.661 (CA19-9) to 0.711. In addition, the 1-, 3-, and 5-year OS of group A (patients with PLR ≤ 146.82 and CA19-9 ≤ 36.32 U/ml), group B (patients with either of PLR > 146.82 or CA19-9 > 36.32 U/ml) and group C (patients with PLR > 146.82 and CA19-9 > 36.32 U/ml) were 83.6%, 58.6%, 22.5%, 52.4%, 19.5%, 11.5%, and 42.3%, 11.9%, 0%, respectively. The preoperative PLR and serum CA19-9 are associated with prognosis of patients with GBC. The combination of PLR and CA19-9 may serve as a significant prognostic biomarker for GBC patients superior to either PLR or CA19-9 alone.

14.
Food Chem ; 445: 138713, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38364495

ABSTRACT

In the study, a sweet wine koji (YQ-5) was successfully selected to make frozen Chinese sweet rice wine dough (F-CD) for flavor enrichment. Subsequently, the effects of single improver (SI: xanthan gum, potassium carbonate, antifreeze protein, diacetyl tartaric esters of monoglycerides and composite improver (XPADG: Four improvers mixed in proportion) on the texture, rheological properties, microstructure, water status, protein secondary structure, volatile flavor substances and sensory properties of F-CD during frozen storage were investigated. The results indicated that XPADG slowed the increase in freezable water and water mobility in the dough, giving dough the most stable rheological properties and minimizing the damage of freezing to the secondary structure and microstructure of proteins. Besides, GC-QTOF/MS analysis showed that XPADG may facilitate the retention of flavoring substances in F-CD after storage for 6 days. Finally, the sensory evaluation showed that XPADG imparted good sensory properties to the product after freezing for 6 days.


Subject(s)
Glutens , Wine , Glutens/chemistry , Water/chemistry , Freezing , Bread , China
15.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(1): 81-87, 2024 Feb 18.
Article in Chinese | MEDLINE | ID: mdl-38318900

ABSTRACT

OBJECTIVE: To compare the trueness of incisal guidance of implant-supported single crowns designed by patient-specific motion (PSM) with that designed by average-value virtual articulator (AVA). METHODS: The study had recruited 12 participants with complete dentition and stable incisal guidance. An intraoral scanner was used to scan digital casts and record two types of patient-specific motion (data only including protrusive movement, and data including protrusive movement and lateral protrusive movement). The lingual surfaces of the maxillary incisors which guided the protrusive movement was selected and elevated to create a reference cast. A maxillary central incisor of original casts was vir-tually extracted and implanted to generate a working cast. The Dental system software program was used to design implant-supported single crowns with the anatomical coping design method. The incisal guidance was designed by different methods. The incisal guidance in control group was designed by the average-value virtual articulator. The incisal guidance in experiment groups was designed by the patient-specific motion only including protrusive movement (PSM1) and with the patient-specific motion including protrusive movement and lateral protrusive movement (PSM2). The incisal guidance of prosthesis designed by these 3 methods were compared with the original incisal guidance in Geomagic Control 2015 (3DSystem, America). The measurements included: Average of positive values, ratio of positive area and maximum value reflecting supra-occlusion; average of negative values, ratio of negative area and minimum value reflecting over-correction; and root mean square reflecting overall deviation. RESULTS: Statistical data were collected using the median (interquartile range) method. The average of positive values, ratio of positive area and average of negative values of the PSM2 group were smaller than those of the control group [8.0 (18.8) µm vs. 37.5 (47.5) µm; 0 vs. 7.2% (38.1%); -109.0 (63.8) µm vs.-66.5 (64.5) µm], and the ratio of negative area of PSM2 group was larger than those of the control group [52.9% (47.8%) vs. 17.3% (45.3%)], with significant differences (P all < 0.05). The ratio of positive area [0.1% (7.0%)] and average of negative values [-97.0 (61.5) µm] of PSM1 group, were smaller than those of the control group, and the ratio of negative area [40.7% (39.2%)] of the PSM1 group was larger than that of the control group, with significant differences (P < 0.05). The average of positive values [20.0 (42.0) µm] and ratio of positive area of PSM1 group was larger than that of the PSM2 group with significant differences (P < 0.05). CONCLUSION: To establish the incisor guidance of implant-supported single crowns, compared with the average-value virtual articulator and the patient-specific motion only including protrusive movement, the patient-specific motion including protrusive movement and lateral protrusive movement is more conducive to reducing the protrusive interference of prosthesis and improving the occlusal fit.


Subject(s)
Incisor , Software , Humans , Maxilla , Crowns , Movement , Computer-Aided Design
16.
Langenbecks Arch Surg ; 409(1): 51, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38305889

ABSTRACT

BACKGROUND: The neutrophil-lymphocyte ratio (NLR) and platelet distribution width (PDW) are associated with poor prognosis in various cancers. We aimed to analyze the prognostic value of the combination of preoperative NLR and PDW in patients with gallbladder carcinoma (GBC). METHODS: A total of 287 GBC patients who underwent curative-intent surgery in our institution was included. The relationship between NLR and PDW and clinicopathological features were analyzed. The receiver operating characteristic (ROC) curves were used to determine the optimal cutoff value for NLR and PDW. Overall survival (OS) was estimated using the Kaplan-Meier method. Meanwhile, the univariate and multivariate Cox regression models were used to assess the risk factors for OS. RESULTS: The optimal cutoff value of NLR and PDW was 3.00 and 14.76, respectively. In addition, survival analysis demonstrated that patients with NLR > 3.00 and PDW > 14.76 had a worse prognosis than patients with NLR ≤ 3.00 and PDW ≤ 14.76, respectively. The multivariate analysis showed that NLR and PDW were independent prognostic factors in the patients with GBC. When we combined NLR and PDW, the area under the ROC curve increased from 0.665 (NLR) and 0.632 (PDW) to 0.676. Moreover, the 1-, 3-, and 5-year OS of group A (patients with NLR ≤ 3.00 and PDW ≤ 14.76), group B (patients with either of NLR > 3.00 or PDW > 14.76) and group C (patients with NLR > 3.00 and PDW > 14.76) were 88.7%, 62.6%, 28.1%, 65.1%, 26.9%, 13.1%, and 34.8%, 8.3%, 0%, respectively. CONCLUSION: The combination of NLR and PDW may serve as a significant prognostic biomarker for GBC patients superior to either NLR or PDW alone.


Subject(s)
Gallbladder Neoplasms , Neutrophils , Humans , Prognosis , Retrospective Studies , Lymphocytes , ROC Curve
17.
Water Res ; 253: 121296, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38367378

ABSTRACT

Sulfur-driven autotrophic denitrification (SAD) exhibits significant benefits in treating low carbon/nitrogen wastewater. This study presents an eco-friendly, cost-effective, and highly efficient method for enhancing nitrogen removal performance. The addition of biochar prepared at 300 °C (BC300) notably increased nitrogen removal efficiency by 31.60 %. BC300 concurrently enhanced electron production, the activities of the electron transfer system, and electron acceptors. With BC300, the ratio of NADH/NAD+ rose 2.00±0.11 times compared to without biochar, and the expression of NAD(P)H dehydrogenase genes was markedly up-regulated. In the electron transfer system, BC300 improved the electroactivity of extracellular polymeric substances and the activities of NADH dehydrogenase and complex III in intracellular electron transfer. Subsequently, electrons were directed into denitrification enzymes, where the nar, nir, nor, and nos related genes were highly expressed with BC300 addition. Significantly, BC300 activated the Clp and quorum sensing systems, positively influencing numerous gene expressions and microbial communication. Furthermore, the O%, H%, molar O/C, and aromaticity index in biochar were identified as crucial bioavailable parameters for enhancing nitrogen removal in the SAD process. This study not only confirms the application potential of biochar in SAD, but also advances our comprehension of its underlying mechanisms.


Subject(s)
Charcoal , Denitrification , Nitrogen , Nitrogen/metabolism , NAD , Bioreactors , Sulfur , Autotrophic Processes , Nitrates
18.
Anal Chem ; 96(8): 3672-3678, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38361229

ABSTRACT

Redox potentiometry has emerged as a new platform for in vivo sensing, with improved neuronal compatibility and strong tolerance against sensitivity variation caused by protein fouling. Although enzymes show great possibilities in the fabrication of selective redox potentiometry, the fabrication of an enzyme electrode to output open-circuit voltage (EOC) with fast response remains challenging. Herein, we report a concept of novel enzymatic galvanic redox potentiometry (GRP) with improved time response coupling the merits of the high selectivity of enzyme electrodes with the excellent biocompatibility and reliability of GRP sensors. With a glucose biosensor as an illustration, we use flavin adenine dinucleotide-dependent glucose dehydrogenase as the recognition element and carbon black as the potential relay station to improve the response time. We find that the enzymatic GRP biosensor rapidly responds to glucose with a good linear relationship between EOC and the logarithm of glucose concentration within a range from 100 µM to 2.65 mM. The GRP biosensor shows high selectivity over O2 and coexisting neurochemicals, good reversibility, and sensitivity and can in vivo monitor glucose dynamics in rat brain. We believe that this study will pave a new platform for the in vivo potentiometric biosensing of chemical events with high reliability.


Subject(s)
Biosensing Techniques , Glucose Oxidase , Potentiometry , Reproducibility of Results , Glucose Oxidase/metabolism , Electrodes , Glucose , Oxidation-Reduction , Glucose 1-Dehydrogenase/metabolism
19.
Bioresour Technol ; 395: 130331, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224786

ABSTRACT

Sulfur-driven autotrophic denitrification (SAD) granular process has significant advantages in treating low-carbon/nitrogen wastewater; however, the slow growth rate of sulfur-oxidizing bacteria (SOB) results in a prolonged start-up duration. In this study, the thiosulfate-driven autotrophic denitrification (TAD) was successfully initiated by inoculating anaerobic granular sludge on Day 7. Additionally, the electron donor was successfully transferred to the cheaper elemental sulfur from Day 32 to Day 54 at the nitrogen loading rate of 176.2 g N m-3 d-1. During long term experiment, the granules maintained compact structures with the α-helix/(ß-sheet + random coil) of 29.5-40.1 %. Extracellular electron transfer (EET) pathway shifted from indirect to direct when electron donors were switched thiosulfate to elemental sulfur. Microbial analysis suggested that thiosulfate improved EET involving enzymes activity. Thiobacillus and Sulfurimonas were dominant in TAD, whereas Longilinea was enriched in elemental sulfur-driven autotrophic denitrification. Overall, this strategy achieved in-situ enrichment of SOB in granules, thereby shortening start-up process.


Subject(s)
Microbiota , Thiosulfates , Denitrification , Electrons , Nitrates/metabolism , Bioreactors , Bacteria/metabolism , Sulfur/metabolism , Autotrophic Processes , Nitrogen
20.
Cell Biol Int ; 48(4): 496-509, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38225685

ABSTRACT

Tamoxifen (TAM) resistance poses a significant clinical challenge in human breast cancer and exhibits high heterogeneity among different patients. Rg3, an original ginsenoside known to inhibit tumor growth, has shown potential for enhancing TAM sensitivity in breast cancer cells. However, the specific role and underlying mechanisms of Rg3 in this context remain unclear. Aerobic glycolysis, a metabolic process, has been implicated in chemotherapeutic resistance. In this study, we demonstrate that elevated glycolysis plays a central role in TAM resistance and can be effectively targeted and overcome by Rg3. Mechanistically, we observed upregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a key mediator of glycolysis, in TAM-resistant MCF-7/TamR and T-47D/TamR cells. Crucially, PFKFB3 is indispensable for the synergistic effect of TAM and Rg3 combination therapy, which suppresses cell proliferation and glycolysis in MCF-7/TamR and T-47D/TamR cells, both in vitro and in vivo. Moreover, overexpression of PFKFB3 in MCF-7 cells mimicked the TAM resistance phenotype. Importantly, combination treatment significantly reduced TAM-resistant MCF-7 cell proliferation in an in vivo model. In conclusion, this study highlights the contribution of Rg3 in enhancing the therapeutic efficacy of TAM in breast cancer, and suggests that targeting TAM-resistant PFKFB3 overexpression may represent a promising strategy to improve the response to combination therapy in breast cancer.


Subject(s)
Breast Neoplasms , Ginsenosides , Humans , Female , Tamoxifen/pharmacology , Breast Neoplasms/pathology , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm , MCF-7 Cells , Glycolysis , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL
...