Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 280
Filter
1.
Inj Epidemiol ; 11(1): 49, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39252094

ABSTRACT

BACKGROUND: Extreme Risk Protection Orders (ERPOs) are civil court orders that prohibit firearm purchase and possession when someone is behaving dangerously and is at risk of harming themselves and/or others. As of June 2024, ERPOs are available in 21 states and the District of Columbia to prevent firearm violence. This paper describes the design and protocol of a six-state study of ERPO use. METHODS: The six states included are California, Colorado, Connecticut, Florida, Maryland, and Washington. During the 3-year project period (2020-2023), ERPO case files were obtained through public records requests or through agreements with agencies with access to these data in each state. A team of over four dozen research assistants from seven institutions coded 6628 ERPO cases, abstracting 80 variables per case under domains related to respondent characteristics, events and behaviors leading to ERPO petitions, petitioner types, and court outcomes. Research assistants received didactic training through an online learning management system that included virtual training modules, quizzes, practice coding exercises, and two virtual synchronous sessions. A protocol for gaining strong interrater reliability was used. Research assistants also learned strategies for reducing the risk of experiencing secondary trauma through the coding process, identifying its occurrence, and obtaining help. DISCUSSION: Addressing firearm violence in the U.S. is a priority. Understanding ERPO use in these six states can inform implementation planning and ERPO uptake, including promising opportunities to enhance safety and prevent firearm-related injuries and deaths. By publishing this protocol, we offer detailed insight into the methods underlying the papers published from these data, and the process of managing data abstraction from ERPO case files across the multi-state and multi-institution teams involved. Such information may also inform future analyses of this data, and future replication efforts. REGISTRATION: This protocol is registered on Open Science Framework ( https://osf.io/kv4fc/ ).

2.
Biosens Bioelectron ; 266: 116717, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39232435

ABSTRACT

Epithelial cell adhesion molecule (EpCAM), which is overexpressed in breast cancer cells and participates in cell signaling, migration, proliferation, and differentiation, has been utilized as a biomarker for cancer diagnosis and therapeutic prognosis. Here, a dual-signal readout nonenzymatic aptasensor is fabricated for the evaluation of EpCAM at the level of three breast cancer cell lines. The central principle of this enzyme-free aptasensor is the use of double hook-type aptamers (SYL3C and SJ3C2)-functionalized magnetic iron oxide (Fe3O4) as capture probes and quasi-CoFe prussian blue analogs (QCoFe PBAs) as nonenzymatic signal probes for colorimetric and electrochemical analysis. Following ligand detachment, the CoFe PBA was transformed to QCoFe PBA (calcined at 350 °C for 1 h), with its metal active sites exposed by controllable pyrolysis. We found that the enhanced sensitivity was attributed to the resonance effect of QCoFe PBA with the remarkable enzymatic properties. The dual-signal readout nonenzymatic aptasensor exhibited limits of detection for EpCAM as low as 0.89 pg mL-1 and 0.24 pg mL-1, within a wide linear range from 0.001 to 100 ng mL-1, respectively. We successfully employed this nonenzymatic aptasensor for monitoring EpCAM expression in three breast cancer cell lines, which provides an economical and robust alternative to costly and empirical flow cytometry. The dual-signal readout nonenzymatic aptasensor provides rapid, robust, and promising technological support for the accurate management of tumors.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Breast Neoplasms , Colorimetry , Electrochemical Techniques , Epithelial Cell Adhesion Molecule , Humans , Biosensing Techniques/methods , Aptamers, Nucleotide/chemistry , Colorimetry/methods , Electrochemical Techniques/methods , Breast Neoplasms/diagnosis , Cell Line, Tumor , Limit of Detection , Female , Ferrocyanides/chemistry
3.
J Transl Med ; 22(1): 742, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107788

ABSTRACT

BACKGROUND: LARC patients commonly receive adjuvant therapy, however, hidden micrometastases still limit the improvement of OS. This study aims to investigate the impact of VASN in rectal cancer with pulmonary metastasis and understand the underlying molecular mechanisms to guide adjuvant chemotherapy selection. METHODS: Sequencing data from rectal cancer patients with pulmonary metastasis from Sun Yat-sen University Cancer Center (SYSUCC) and publicly available data were meticulously analyzed. The functional role of VASN in pulmonary metastasis was validated in vivo and in vitro. Coimmunoprecipitation (co-IP), immunofluorescence, and rescue experiments were conducted to unravel potential molecular mechanisms of VASN. Moreover, VASN expression levels in tumor samples were examined and analyzed for their correlations with pulmonary metastasis status, tumor stage, adjuvant chemotherapy benefit, and survival outcome. RESULTS: Our study revealed a significant association between high VASN expression and pulmonary metastasis in LARC patients. Experiments in vitro and in vivo demonstrated that VASN could promote the cell proliferation, metastasis, and drug resistance of colorectal cancer. Mechanistically, VASN interacts with the NOTCH1 protein, leading to concurrent activation of the NOTCH and MAPK pathways. Clinically, pulmonary metastasis and advanced tumor stage were observed in 90% of VASN-positive patients and 53.5% of VASN-high patients, respectively, and VASN-high patients had a lower five-year survival rate than VASN-low patients (26.7% vs. 83.7%). Moreover, the Cox analysis and OS analysis indicated that VASN was an independent prognostic factor for OS (HR = 7.4, P value < 0.001) and a predictor of adjuvant therapy efficacy in rectal cancer. CONCLUSIONS: Our study highlights the role of VASN in decreasing drug sensitivity and activating the NOTCH and MAPK pathways, which leads to tumorigenesis and pulmonary metastasis. Both experimental and clinical data support that rectal cancer patients with VASN overexpression detected in biopsies have a higher risk of pulmonary metastasis and adjuvant chemotherapy resistance.


Subject(s)
Drug Resistance, Neoplasm , Lung Neoplasms , Rectal Neoplasms , Humans , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Female , Male , Rectal Neoplasms/pathology , Rectal Neoplasms/metabolism , Rectal Neoplasms/genetics , Rectal Neoplasms/drug therapy , Chemotherapy, Adjuvant , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Middle Aged , Animals , Gene Expression Regulation, Neoplastic , Mice, Nude , Cell Proliferation/drug effects , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , MAP Kinase Signaling System/drug effects
4.
Hum Vaccin Immunother ; 20(1): 2388938, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39140437

ABSTRACT

COVID-19 vaccine hesitancy remains prevalent globally. However, national data on this issue in the general population after the termination of the zero-COVID policy in China are limited. In March 2023, we conducted a nationwide cross-sectional survey among Chinese adults using a self-administered questionnaire. Descriptive statistics and multivariate logistic regressions were employed. Among 4,966 participants, 43.8% reported COVID-19 vaccine hesitancy following the end of the zero-COVID policy in China. Higher rates of vaccine hesitancy were associated with being married (married: OR 1.36, 95%CI 1.17-1.57; other marital status: OR 1.86, 95%CI 1.36-2.55), working in healthcare (OR 1.64, 95%CI 1.38-1.96), having both minors and older adults in the household (OR 1.45, 95%CI 1.20-1.75), having no minors and older adults in the household (OR 1.44, 95%CI 1.17-1.77), having chronic diseases (OR 1.42, 95%CI 1.23-1.64), experiencing adverse events post-vaccination (OR 1.39, 95%CI 1.19-1.61), and uncertainty about previous COVID-19 infection (OR 1.45, 95%CI 1.13-1.86). Conversely, participants who had received the influenza vaccine in the past three years (OR 0.62, 95%CI 0.54-0.72), had previously taken the COVID-19 vaccine (OR 0.44, 95%CI 0.32-0.59), and had higher confidence in vaccines (OR 0.63, 95%CI 0.60-0.67) were less likely to exhibit hesitancy. Our findings indicate a significant level of vaccine hesitancy, underscoring the urgent need for tailored public health strategies to address vaccine hesitancy and improve uptake post-zero-COVID policy in China. A comprehensive understanding of public concerns and related factors is essential for developing effective vaccine communication strategies.


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccination Hesitancy , Humans , Cross-Sectional Studies , China , Male , Female , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Middle Aged , Adult , Vaccination Hesitancy/statistics & numerical data , Vaccination Hesitancy/psychology , Surveys and Questionnaires , Young Adult , Adolescent , Health Policy , Aged , SARS-CoV-2/immunology , Vaccination/psychology , Vaccination/statistics & numerical data
5.
BMC Med Imaging ; 24(1): 203, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103775

ABSTRACT

BACKGROUND: Radiomics provided opportunities to quantify the tumor phenotype non-invasively. This study extracted contrast-enhanced computed tomography (CECT) radiomic signatures and evaluated clinical features of bone metastasis in non-small-cell lung cancer (NSCLC). With the combination of the revealed radiomics and clinical features, the predictive modeling on bone metastasis in NSCLC was established. METHODS: A total of 318 patients with NSCLC at the Tianjin Medical University Cancer Institute & Hospital was enrolled between January 2009 and December 2019, which included a feature-learning cohort (n = 223) and a validation cohort (n = 95). We trained a radiomics model in 318 CECT images from feature-learning cohort to extract the radiomics features of bone metastasis in NSCLC. The Kruskal-Wallis and the least absolute shrinkage and selection operator regression (LASSO) were used to select bone metastasis-related features and construct the CT radiomics score (Rad-score). Multivariate logistic regression was performed with the combination of the Rad-score and clinical data. A predictive nomogram was subsequently developed. RESULTS: Radiomics models using CECT scans were significant on bone metastasis prediction in NSCLC. Model performance was enhanced with each information into the model. The radiomics nomogram achieved an AUC of 0.745 (95% confidence interval [CI]: 0.68,0.80) on predicting bone metastasis in the training set and an AUC of 0.808(95% confidence interval [CI]: 0.71,0.88) in the validation set. CONCLUSION: The revealed invisible image features were of significance on guiding bone metastasis prediction in NSCLC. Based on the combination of the image features and clinical characteristics, the predictive nomogram was established. Such nomogram can be used for the auxiliary screening of bone metastasis in NSCLC.


Subject(s)
Bone Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Tomography, X-Ray Computed , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/secondary , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Male , Female , Tomography, X-Ray Computed/methods , Bone Neoplasms/secondary , Bone Neoplasms/diagnostic imaging , Middle Aged , Aged , Nomograms , Retrospective Studies , Contrast Media , Radiomics
6.
Int J Biol Macromol ; 272(Pt 1): 132860, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38834117

ABSTRACT

To explore the adjuvant therapy drugs of low-dose metformin, one homogeneous polysaccharide named APS-D1 was purified from Astragalus membranaceus by DEAE-52 cellulose and Sephadex G-100 column chromatography. Its chemical structure was characterized by molecular weight distribution, monosaccharide composition, infrared spectrum, methylation analysis, and NMR. The results revealed that APS-D1 (7.36 kDa) consisted of glucose, galactose, and arabinose (97.51 %:1.56 %:0.93 %). It consisted of →4)-α-D-Glcp-(1→ residue backbone with →3)-ß-D-Galp-(1→ residue and terminal-α/ß-D-Glcp-(1→ side chains. APS-D1 could significantly improve inflammation (TNF-α, LPS, and IL-10) in vivo. Moreover, APS-D1 improved the curative effect of low-dose metformin without adverse events. APS-D1 combined with low-dose metformin regulated several gut bacteria, in which APS-D1 enriched Staphylococcus lentus to produce l-carnitine (one of 136 metabolites of S. lentus). S. lentus and l-carnitine could improve diabetes, and reduction of S. lentusl-carnitine production impaired diabetes improvement. The combination, S. lentus, and l-carnitine could promote fatty acid oxidation (CPT1) and inhibit gluconeogenesis (PCK and G6Pase). The results indicated that APS-D1 enhanced the curative effect of low-dose metformin to improve diabetes by enriching S. lentus, in which the effect of S. lentus was mediated by l-carnitine. Collectively, these findings support that low-dose metformin supplemented with APS-D1 may be a favorable therapeutic strategy for type 2 diabetes.


Subject(s)
Astragalus Plant , Carnitine , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Hypoglycemic Agents , Metformin , Polysaccharides , Staphylococcus , Astragalus Plant/chemistry , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , Staphylococcus/drug effects , Staphylococcus/metabolism , Metformin/administration & dosage , Metformin/pharmacology , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacology , Carnitine/metabolism , Male , Animals , Mice , Mice, Inbred C57BL , Gastrointestinal Microbiome/drug effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/microbiology , Insulin Resistance
7.
Inorg Chem ; 63(26): 11924-11929, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38885631

ABSTRACT

All-inorganic halide perovskite semiconductors have received extensive attention due to their excellent photoelectronic conversion efficiency. Prior studies have reported on compounds CsPbBr3 and CsPbCl3. However, the transition phases between them have not been systematically studied. Here, a series of large-size single crystals of CsPbBrxCl3-x (x = 0-3) were successfully grown by the Bridgman method, which proves that the Br and Cl atoms can be miscible in any proportion in the solid solution system, and the change of lattice parameters conforms to Vegard's law. Also, the bandgap and light emission were studied. It is found that the band gap (2.90-2.29 eV) and photoluminescence characteristics (from blue light to green light) can be effectively tuned by adjusting the content of the Br atom. These results provide valuable guidance for the development and optimization of photoelectronic semiconductors that can meet different practical demands.

8.
J Immunother Cancer ; 12(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871480

ABSTRACT

BACKGROUND: The sustained effectiveness of anti-programmed cell death protein-1/programmed death-ligand 1 treatment is limited to a subgroup of patients with advanced nasopharyngeal carcinoma (NPC), and the specific biomarker determining the response to immunotherapy in NPC remains uncertain. METHODS: We assessed the associations between pre-immunotherapy and post-immunotherapy serum lipoproteins and survival in a training cohort (N=160) and corroborated these findings in a validation cohort (N=100). Animal studies were performed to explore the underlying mechanisms. Additionally, the relationship between high-density lipoprotein-cholesterol (HDL-C) levels and M1/M2-like macrophages, as well as activated CD8+T cells in tumor tissues from patients with NPC who received immunotherapy, was investigated. RESULTS: The lipoproteins cholesterol, HDL-C, low-density lipoprotein-cholesterol, triglycerides, apolipoprotein A-1 (ApoA1), and apolipoprotein B, were significantly altered after immunotherapy. Patients with higher baseline HDL-C or ApoA1, or those with increased HDL-C or ApoA1 after immunotherapy had longer progression-free survival, a finding verified in the validation cohort (p<0.05). Multivariate analysis revealed that baseline HDL-C and elevated HDL-C post-immunotherapy were independent predictors of superior PFS (p<0.05). Furthermore, we discovered that L-4F, an ApoA1 mimetic, could inhibit tumor growth in NPC xenografts. This effect was associated with L-4F's ability to polarize M2-like macrophages towards an M1-like phenotype via the activation of mitogen-activated protein kinase (MAPK) p38 and nuclear factor-κB (NF-κB) p65, thereby alleviating immunosuppression in the tumor microenvironment. Importantly, in patients with NPC with high plasma HDL-C levels, the number of M2-like macrophages was significantly decreased, while M1-like macrophages and activated CD8+T cells were notably increased in those with high HDL-C levels. CONCLUSION: Higher baseline HDL-C levels or an increase in HDL-C post-immunotherapy can enhance immunotherapeutic responses in patients with NPC by reprogramming M2-like macrophages towards the M1 phenotype. This suggests a potential role for prospectively exploring ApoA1 mimetics as adjuvant agents in combination with immunotherapy.


Subject(s)
Cholesterol, HDL , Immunotherapy , Nasopharyngeal Carcinoma , Tumor-Associated Macrophages , Humans , Nasopharyngeal Carcinoma/immunology , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/drug therapy , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Immunotherapy/methods , Animals , Female , Male , Cholesterol, HDL/metabolism , Cholesterol, HDL/blood , Mice , Middle Aged , Phenotype , Tumor Microenvironment , Nasopharyngeal Neoplasms/immunology , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/therapy , Nasopharyngeal Neoplasms/drug therapy , Adult
9.
MedComm (2020) ; 5(6): e586, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38832214

ABSTRACT

TP53 comutation is related to poor prognosis of non-small cell lung cancer. However, there is limited study focusing on the structural influence of TP53 mutation on third-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) treatment. We retrospectively analyzed the clinical and molecular data of patients treated with third-generation EGFR-TKIs in two independent cohorts. A total of 117 patients from the Sun Yat-sen University Cancer Center (SYSUCC) and 141 patients from the American Association for Cancer Research Project GENIE database were included. In the SYSUCC cohort, TP53 comutations were found in 59 patients (50.4%) and were associated with poor median progress-free survival (mPFS) and median overall survival (mOS). The additional subtype analysis found that TP53 mutation in the alpha-helix region had shorter mOS compared with those with TP53 mutations in other regions in the SYSUCC cohort (mOS, 12.2 vs. 21.7 months; p = 0.027). Similar findings were confirmed in the GENIE cohort. Specifically, the presence of TP53 mutation in the alpha-helix region was an independent negative predictive factor for PFS [hazard ratio (HR) 2.05(1.01-4.18), p = 0.048] and OS [HR 3.62(1.60-8.17), p = 0.002] in the SYSUCC cohort. TP53 mutation in alpha-helix region was related to inferior clinical outcomes in patients treated with third-generation EGFR-TKIs.

10.
PLoS One ; 19(6): e0305284, 2024.
Article in English | MEDLINE | ID: mdl-38843232

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0243652.].

11.
Gland Surg ; 13(5): 640-653, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38845837

ABSTRACT

Background: Breast-conserving surgery (BCS) stands as the favored modality for treating early-stage breast cancer. Accurately forecasting the feasibility of BCS preoperatively can aid in surgical planning and reduce the rate of switching of surgical methods and reoperation. The objective of this study is to identify the radiomics features and preoperative breast magnetic resonance imaging (MRI) characteristics that are linked with positive margins following BCS in patients with breast cancer, with the ultimate aim of creating a predictive model for the feasibility of BCS. Methods: This study included a cohort of 221 pretreatment MRI images obtained from patients with breast cancer. A total of seven MRI semantic features and 1,561 radiomics features of lesions were extracted. The feature subset was determined by eliminating redundancy and correlation based on the features of the training set. The least absolute shrinkage and selection operator (LASSO) logistic regression was then trained with this subset to classify the final BCS positive and negative margins and subsequently validated using the test set. Results: Seven features were significant in the discrimination of cases achieving positive and negative margins. The radiomics signature achieved area under the curve (AUC), accuracy, sensitivity, and specificity of 0.760 [95% confidence interval (CI): 0.630, 0.891], 0.712 (95% CI: 0.569, 0.829), 0.882 (95% CI: 0.623, 0.979) and 0.629 (95% CI: 0.449, 0.780) in the test set, respectively. The combined model of radiomics signature and background parenchymal enhancement (BPE) demonstrated an AUC, accuracy, sensitivity, and specificity of 0.759 (95% CI: 0.628, 0.890), 0.654 (95% CI: 0.509, 0.780), 0.679 (95% CI: 0.476, 0.834) and 0.625 (95% CI: 0.408, 0.804). Conclusions: The combination of preoperative MRI radiomics features can well predict the success of breast conserving surgery.

12.
Blood ; 144(7): 729-741, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38805639

ABSTRACT

ABSTRACT: Loss of long-term hematopoietic stem cell (LT-HSC) function ex vivo hampers the success of clinical protocols that rely on culture. However, the kinetics and mechanisms through which this occurs remain incompletely characterized. In this study, through time-resolved single-cell RNA sequencing, matched in vivo functional analysis, and the use of a reversible in vitro system of early G1 arrest, we defined the sequence of transcriptional and functional events that occur during the first ex vivo division of human LT-HSCs. We demonstrated that the sharpest loss in LT-HSC repopulation capacity happens early on, between 6 and 24 hours of culture, before LT-HSCs commit to cell cycle progression. During this time window, LT-HSCs adapt to the culture environment, limit the global variability in gene expression, and transiently upregulate gene networks involved in signaling and stress responses. From 24 hours, LT-HSC progression past early G1 contributes to the establishment of differentiation programs in culture. However, contrary to the current assumptions, we demonstrated that the loss of HSC function ex vivo is independent of cell cycle progression. Finally, we showed that targeting LT-HSC adaptation to culture by inhibiting the early activation of JAK/STAT signaling improves HSC long-term repopulating function ex vivo. Collectively, our study demonstrated that controlling early LT-HSC adaptation to ex vivo culture, for example, via JAK inhibition, is critically important to improve HSC gene therapy and expansion protocols.


Subject(s)
Cell Cycle , Hematopoietic Stem Cells , Humans , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Cells, Cultured , Signal Transduction , Cell Differentiation , Cell Culture Techniques/methods , Adaptation, Physiological
13.
Acad Radiol ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693025

ABSTRACT

RATIONALE AND OBJECTIVES: Peritoneal recurrence is the predominant pattern of recurrence in advanced ovarian cancer (AOC) and portends a dismal prognosis. Accurate prediction of peritoneal recurrence and disease-free survival (DFS) is crucial to identify patients who might benefit from intensive treatment. We aimed to develop a predictive model for peritoneal recurrence and prognosis in AOC. METHODS: In this retrospective multi-institution study of 515 patients, an end-to-end multi-task convolutional neural network (MCNN) comprising a segmentation convolutional neural network (CNN) and a classification CNN was developed and tested using preoperative CT images, and MCNN-score was generated to indicate the peritoneal recurrence and DFS status in patients with AOC. We evaluated the accuracy of the model for automatic segmentation and predict prognosis. RESULTS: The MCNN achieved promising segmentation performances with a mean Dice coefficient of 84.3% (range: 78.8%-87.0%). The MCNN was able to predict peritoneal recurrence in the training (AUC 0.87; 95% CI 0.82-0.90), internal test (0.88; 0.85-0.92), and external test set (0.82; 0.78-0.86). Similarly, MCNN demonstrated consistently high accuracy in predicting recurrence, with an AUC of 0.85; 95% CI 0.82-0.88, 0.83; 95% CI 0.80-0.86, and 0.85; 95% CI 0.83-0.88. For patients with a high MCNN-score of recurrence, it was associated with poorer DFS with P < 0.0001 and hazard ratios of 0.1964 (95% CI: 0.1439-0.2680), 0.3249 (95% CI: 0.1896-0.5565), and 0.3458 (95% CI: 0.2582-0.4632). CONCLUSION: The MCNN approach demonstrated high performance in predicting peritoneal recurrence and DFS in patients with AOC.

14.
Bioact Mater ; 39: 191-205, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38808157

ABSTRACT

Unnecessary exposure to ionizing radiation (IR) often causes acute and chronic oxidative damages to normal cells and organs, leading to serious physiological and even life-threatening consequences. Amifostine (AMF) is a validated radioprotectant extensively applied in radiation and chemotherapy medicine, but the short half-life limits its bioavailability and clinical applications, remaining as a great challenge to be addressed. DNA-assembled nanostructures especially the tetrahedral framework nucleic acids (tFNAs) are promising nanocarriers with preeminent biosafety, low biotoxicity, and high transport efficiency. The tFNAs also have a relative long-term maintenance for structural stability and excellent endocytosis capacity. We therefore synthesized a tFNA-based delivery system of AMF for multi-organ radioprotection (tFNAs@AMF, also termed nanosuit). By establishing the mice models of accidental total body irradiation (TBI) and radiotherapy model of Lewis lung cancer, we demonstrated that the nanosuit could shield normal cells from IR-induced DNA damage by regulating the molecular biomarkers of anti-apoptosis and anti-oxidative stress. In the accidental total body irradiation (TBI) mice model, the nanosuit pretreated mice exhibited satisfactory alteration of superoxide dismutase (SOD) activities and malondialdehyde (MDA) contents, and functional recovery of hematopoietic system, reducing IR-induced pathological damages of multi-organ and safeguarding mice from lethal radiation. More importantly, the nanosuit showed a selective radioprotection of the normal organs without interferences of tumor control in the radiotherapy model of Lewis lung cancer. Based on a conveniently available DNA tetrahedron-based nanocarrier, this work presents a high-efficiency delivery system of AMF with the prolonged half-life and enhanced radioprotection for multi-organs. Such nanosuit pioneers a promising strategy with great clinical translation potential for radioactivity protection.

15.
ACS Nano ; 18(20): 13249-13265, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38720584

ABSTRACT

The therapeutic application of mesenchymal stem cells (MSCs) has good potential as a treatment strategy for systemic lupus erythematosus (SLE), but traditional MSC therapy still has limitations in effectively modulating immune cells. Herein, we present a promising strategy based on dexamethasone liposome-integrated MSCs (Dexlip-MSCs) for treating SLE via multiple immunomodulatory pathways. This therapeutic strategy prolonged the circulation time of dexamethasone liposomes in vivo, restrained CD4+T-cell proliferation, and inhibited the release of proinflammatory mediators (IFN-γ and TNF-α) by CD4+T cells. In addition, Dexlip-MSCs initiated cellular reprogramming by activating the glucocorticoid receptor (GR) signaling pathway to upregulate the expression of anti-inflammatory factors such as cysteine-rich secretory protein LCCL-containing domain 2 (CRISPLD2) and downregulate the expression of proinflammatory factors. In addition, Dexlip-MSCs synergistically increased the anti-inflammatory inhibitory effect of CD4+T cells through the release of dexamethasone liposomes or Dex-integrated MSC-derived exosomes (Dex-MSC-EXOs). Based on these synergistic biological effects, we demonstrated that Dexlip-MSCs alleviated disease progression in MRL/lpr mice more effectively than Dexlip or MSCs alone. These features indicate that our stem cell delivery strategy is a promising therapeutic approach for clinical SLE treatment.


Subject(s)
Dexamethasone , Lupus Erythematosus, Systemic , Mesenchymal Stem Cells , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Dexamethasone/pharmacology , Dexamethasone/chemistry , Lupus Erythematosus, Systemic/therapy , Lupus Erythematosus, Systemic/immunology , Mice , Liposomes/chemistry , Mesenchymal Stem Cell Transplantation , Cell Proliferation/drug effects , Female , Mice, Inbred MRL lpr , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
16.
Inorg Chem ; 63(13): 5908-5915, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38494632

ABSTRACT

It remains a significant hurdle for discovering birefringent materials in the deep ultraviolet (DUV, λ < 200 nm). It is well-known that the OH anions are recognized for their capability to eliminate the dangling bonds from terminal oxygen atoms, promoting the ultraviolet (UV) cutoff edge blueshift and regulating the crystal structure. Here, two new barium hydroxyborates, Ba3B11O18(OH)3(H2O) (BaBOH) and Na2BaB10O16(OH)2(H2O)2 (NaBaBOH), were designed and synthesized while displaying different dimensions. Remarkably, BaBOH presents novel one-dimensional (1D) [B22O37(OH)6]∞ double-chains formed by a new fundamental building block (FBB)[B11O21(OH)3]. NaBaBOH possesses a 2D [B10O16(OH)2]∞ layer with a less common FBB [B10O19(OH)2]. They enrich the structural diversity of hydroxyborates. Moreover, NaBaBOH exhibits a broad transparent window within the DUV spectral range (<190 nm) and possesses a favorable birefringence of 0.064. Furthermore, detailed summaries and structural comparisons have been implemented for all hydroxyborates containing alkali and alkaline-earth metals. This reveals that the OH group modulation strategy can be appropriately employed for the structural design.

17.
Cell Death Dis ; 15(3): 237, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555280

ABSTRACT

End-stage nasopharyngeal carcinoma (NPC) has unsatisfactory survival. The limited benefit of chemotherapy and the scarcity of targeted drugs are major challenges in NPC. New approaches to treat late-stage NPC are urgently required. In this study, we explored whether the dual PI3K/mTOR inhibitor, PQR309, exerted a favorable antineoplastic effect and sensitized the response to gemcitabine in NPC. We observed that PI3K expression was positive and elevated in 14 NPC cell lines compared with that in normal nasopharygeal cell lines. Patients with NPC with higher PI3K levels displayed poorer prognosis. We subsequently showed that PQR309 alone effectively decreased the viability, invasiveness, and migratory capability of NPC cells and neoplasm development in mice xenograft models, and dose-dependently induced apoptosis. More importantly, PQR309 remarkably strengthened the anti-NPC function of gemcitabine both in vivo and in vitro. Mechanistically, PQR309 sensitized NPC to gemcitabine by increasing caspase pathway-dependent apoptosis, blocking GSK-3ß and STAT3/HSP60 signaling, and ablating epithelial-mesenchyme transition. Thus, targeting PI3K/mTOR using PQR309 might represent a treatment option to promote the response to gemcitabine in NPC, and provides a theoretical foundation for the study of targeted drugs combined with chemotherapy for NPC.


Subject(s)
Nasopharyngeal Neoplasms , Phosphatidylinositol 3-Kinases , STAT3 Transcription Factor , Humans , Animals , Mice , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Gemcitabine , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/pharmacology , MTOR Inhibitors , Angiogenesis Inhibitors/pharmacology , Nasopharyngeal Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Apoptosis , Proto-Oncogene Proteins c-akt/metabolism
18.
bioRxiv ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38496565

ABSTRACT

A wide diversity of mating systems occur in nature, with frequent evolutionary transitions in mating-compatibility mechanisms. Basidiomycete fungi typically have two mating-type loci controlling mating compatibility, HD and PR, usually residing on different chromosomes. In Microbotryum anther-smut fungi, there have been repeated events of linkage between the two mating-type loci through chromosome fusions, leading to large non-recombining regions. By generating high-quality genome assemblies, we found that two sister Microbotryum species parasitizing Dianthus plants, M. superbum and M. shykoffianum, as well as the distantly related M. scorzonarae, have their HD and PR mating-type loci on different chromosomes, but with the PR mating-type chromosome fused with part of the ancestral HD chromosome. Furthermore, progressive extensions of recombination suppression have generated evolutionary strata. In all three species, rearrangements suggest the existence of a transient stage of HD-PR linkage by whole chromosome fusion, and, unexpectedly, the HD genes lost their function. In M. superbum, multiple natural diploid strains were homozygous, and the disrupted HD2 gene was hardly expressed. Mating tests confirmed that a single genetic factor controlled mating compatibility (i.e. PR) and that haploid strains with identical HD alleles could mate and produce infectious hyphae. The HD genes have therefore lost their function in the control of mating compatibility in these Microbotryum species. While the loss of function of PR genes in mating compatibility has been reported in a few basidiomycete fungi, these are the first documented cases for the loss of mating-type determination by HD genes in heterothallic fungi. The control of mating compatibility by a single genetic factor is beneficial under selfing and can thus be achieved repeatedly, through evolutionary convergence in distant lineages, involving different genomic or similar pathways.

19.
Bone Res ; 12(1): 14, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424439

ABSTRACT

Diabetic osteoporosis (DOP) is a significant complication that poses continuous threat to the bone health of patients with diabetes; however, currently, there are no effective treatment strategies. In patients with diabetes, the increased levels of ferroptosis affect the osteogenic commitment and differentiation of bone mesenchymal stem cells (BMSCs), leading to significant skeletal changes. To address this issue, we aimed to target ferroptosis and propose a novel therapeutic approach for the treatment of DOP. We synthesized ferroptosis-suppressing nanoparticles, which could deliver curcumin, a natural compound, to the bone marrow using tetrahedral framework nucleic acid (tFNA). This delivery system demonstrated excellent curcumin bioavailability and stability, as well as synergistic properties with tFNA. Both in vitro and in vivo experiments revealed that nanoparticles could enhance mitochondrial function by activating the nuclear factor E2-related factor 2 (NRF2)/glutathione peroxidase 4 (GPX4) pathway, inhibiting ferroptosis, promoting the osteogenic differentiation of BMSCs in the diabetic microenvironment, reducing trabecular loss, and increasing bone formation. These findings suggest that curcumin-containing DNA tetrahedron-based ferroptosis-suppressing nanoparticles have a promising potential for the treatment of DOP and other ferroptosis-related diseases.


Subject(s)
Curcumin , Diabetes Mellitus , Ferroptosis , Nanoparticles , Nucleic Acids , Osteoporosis , Humans , Curcumin/pharmacology , Osteogenesis , Nanoparticles/therapeutic use , Osteoporosis/drug therapy
20.
J Transl Med ; 22(1): 189, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38383412

ABSTRACT

BACKGROUND: Combined small-cell lung carcinoma (cSCLC) represents a rare subtype of SCLC, the mechanisms governing the evolution of cancer genomes and their impact on the tumor immune microenvironment (TIME) within distinct components of cSCLC remain elusive. METHODS: Here, we conducted whole-exome and RNA sequencing on 32 samples from 16 cSCLC cases. RESULTS: We found striking similarities between two components of cSCLC-LCC/LCNEC (SCLC combined with large-cell carcinoma/neuroendocrine) in terms of tumor mutation burden (TMB), tumor neoantigen burden (TNB), clonality structure, chromosomal instability (CIN), and low levels of immune cell infiltration. In contrast, the two components of cSCLC-ADC/SCC (SCLC combined with adenocarcinoma/squamous-cell carcinoma) exhibited a high level of tumor heterogeneity. Our investigation revealed that cSCLC originated from a monoclonal source, with two potential transformation modes: from SCLC to SCC (mode 1) and from ADC to SCLC (mode 2). Therefore, cSCLC might represent an intermediate state, potentially evolving into another histological tumor morphology through interactions between tumor and TIME surrounding it. Intriguingly, RB1 inactivation emerged as a factor influencing TIME heterogeneity in cSCLC, possibly through neoantigen depletion. CONCLUSIONS: Together, these findings delved into the clonal origin and TIME heterogeneity of different components in cSCLC, shedding new light on the evolutionary processes underlying this enigmatic subtype.


Subject(s)
Adenocarcinoma , Carcinoma, Large Cell , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Microdissection , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Adenocarcinoma/genetics , Carcinoma, Large Cell/genetics , Carcinoma, Large Cell/pathology , Genomics , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL