Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(9): 14904-14913, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859154

ABSTRACT

Nonlocality is the defining feature of quantum entanglement. Entangled states with multiple particles are of crucial importance in fundamental tests of quantum physics as well as in many quantum information tasks. One of the archetypal multipartite quantum states, Greenberger-Horne-Zeilinger (GHZ) state, allows one to observe the striking conflict of quantum physics to local realism in the so-called all-versus-nothing way. This is profoundly different from Bell's theorem for two particles, which relies on statistical predictions. Here, we demonstrate an integrated photonic chip capable of generating and manipulating the four-photon GHZ state. We perform a complete characterization of the four-photon GHZ state using quantum state tomography and obtain a state fidelity of 0.729±0.006. We further use the all-versus-nothing test and the Mermin inequalities to witness the quantum nonlocality of GHZ entanglement. Our work paves the way to perform fundamental tests of quantum physics with complex integrated quantum devices.

2.
Nat Commun ; 14(1): 6995, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37914741

ABSTRACT

Quantum storage and distribution of entanglement are the key ingredients for realizing a global quantum internet. Compatible with existing fiber networks, telecom-wavelength entangled photons and corresponding quantum memories are of central interest. Recently, 167Er3+ ions have been identified as a promising candidate for an efficient telecom quantum memory. However, to date, no storage of entangled photons, the crucial step of quantum memory using these promising ions, 167Er3+, has been reported. Here, we demonstrate the storage and retrieval of the entangled state of two telecom photons generated from an integrated photonic chip. Combining the natural narrow linewidth of the entangled photons and long storage time of 167Er3+ ions, we achieve storage time of 1.936 µs, more than 387 times longer than in previous works. Successful storage of entanglement in the crystal is certified using entanglement witness measurements. These results pave the way for realizing quantum networks based on solid-state devices.

3.
Phys Rev Lett ; 130(22): 223601, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37327414

ABSTRACT

Integrated quantum photonics has recently emerged as a powerful platform for generating, manipulating, and detecting entangled photons. Multipartite entangled states lie at the heart of the quantum physics and are the key enabling resources for scalable quantum information processing. Dicke state is an important class of genuinely entangled state, which has been systematically studied in the light-matter interactions, quantum state engineering, and quantum metrology. Here, by using a silicon photonic chip, we report the generation and collectively coherent control of the entire family of four-photon Dicke states, i.e., with arbitrary excitations. We generate four entangled photons from two microresonators and coherently control them in a linear-optic quantum circuit, in which the nonlinear and linear processing are achieved in a chip-scale device. The generated photons are in telecom band, which lays the groundwork for large-scale photonic quantum technologies for multiparty networking and metrology.


Subject(s)
Cognition , Eye , Heart , Photons , Physics
4.
Nat Commun ; 14(1): 1480, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36932077

ABSTRACT

The interference of quanta lies at the heart of quantum physics. The multipartite generalization of single-quanta interference creates entanglement, the coherent superposition of states shared by several quanta. Entanglement allows non-local correlations between many quanta and hence is a key resource for quantum information technology. Entanglement is typically considered to be essential for creating non-local quantum interference. Here, we show that this is not the case and demonstrate multiphoton non-local quantum interference that does not require entanglement of any intrinsic properties of the photons. We harness the superposition of the physical origin of a four-photon product state, which leads to constructive and destructive interference with the photons' mere existence. With the intrinsic indistinguishability in the generation process of photons, we realize four-photon frustrated quantum interference. This allows us to observe the following noteworthy difference to quantum entanglement: We control the non-local multipartite quantum interference with a photon that we never detect, which does not require quantum entanglement. These non-local properties pave the way for the studies of foundations of quantum physics and potential applications in quantum technologies.

5.
Sci Rep ; 10(1): 11503, 2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32661263

ABSTRACT

Surface plasmon polaritons (SPPs) are collective excitations of free electrons propagating along a metal-dielectric interface. Although some basic quantum properties of SPPs, such as the preservation of entanglement, the wave-particle duality of a single plasmon, the quantum interference of two plasmons, and the verification of entanglement generation, have been shown, more advanced quantum information protocols have yet to be demonstrated with SPPs. Here, we experimentally realize quantum state teleportation between single photons and SPPs. To achieve this, we use polarization-entangled photon pairs, coherent photon-plasmon-photon conversion on a metallic subwavelength hole array, complete Bell-state measurements and an active feed-forward technique. The results of both quantum state and quantum process tomography confirm the quantum nature of the SPP mediated teleportation. An average state fidelity of [Formula: see text] and a process fidelity of [Formula: see text], which are well above the classical limit, are achieved. Our work shows that SPPs may be useful for realizing complex quantum protocols in a photonic-plasmonic hybrid quantum network.

6.
Phys Rev Lett ; 125(24): 240501, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33412067

ABSTRACT

Using quantum walks (QWs) to rank the centrality of nodes in networks, represented by graphs, is advantageous compared to certain widely used classical algorithms. However, it is challenging to implement a directed graph via QW, since it corresponds to a non-Hermitian Hamiltonian and thus cannot be accomplished by conventional QW. Here we report the realizations of centrality rankings of a three-, a four-, and a nine-vertex directed graph with parity-time (PT) symmetric quantum walks by using high-dimensional photonic quantum states, multiple concatenated interferometers, and dimension dependent loss to achieve these. We demonstrate the advantage of the QW approach experimentally by breaking the vertex rank degeneracy in a four-vertex graph. Furthermore, we extend our experiment from single-photon to two-photon Fock states as inputs and realize the centrality ranking of a nine-vertex graph. Our work shows that a PT symmetric multiphoton quantum walk paves the way for realizing advanced algorithms.

7.
Opt Express ; 24(7): 6843-60, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-27136982

ABSTRACT

The design, fabrication, and detailed calibration of essential building blocks towards fully integrated linear-optics quantum computation are discussed. Photonic devices are made from silicon nitride rib waveguides, where measurements on ring resonators show small propagation losses. Directional couplers are designed to be insensitive to fabrication variations. Their offset and coupling lengths are measured, as well as the phase difference between the transmitted and reflected light. With careful calibrations, the insertion loss of the directional couplers is found to be small. Finally, an integrated controlled-NOT circuit is characterized by measuring the transmission through different combinations of inputs and outputs. The gate fidelity for the CNOT operation with this circuit is estimated to be 99.81% after post selection. This high fidelity is due to our robust design, good fabrication reproducibility, and extensive characterizations.

8.
Sci Rep ; 4: 3583, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24394808

ABSTRACT

Photonic quantum simulators are promising candidates for providing insight into other small- to medium-sized quantum systems. Recent experiments have shown that photonic quantum systems have the advantage to exploit quantum interference for the quantum simulation of the ground state of Heisenberg spin systems. Here we experimentally characterize this quantum interference at a tuneable beam splitter and further investigate the measurement-induced interactions of a simulated four-spin system by comparing the entanglement dynamics using pairwise concurrence. We also study theoretically a four-site square lattice with next-nearest neighbor interactions and a six-site checkerboard lattice, which might be in reach of current technology.

9.
Proc Natl Acad Sci U S A ; 110(4): 1221-6, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23288900

ABSTRACT

The counterintuitive features of quantum physics challenge many common-sense assumptions. In an interferometric quantum eraser experiment, one can actively choose whether or not to erase which-path information (a particle feature) of one quantum system and thus observe its wave feature via interference or not by performing a suitable measurement on a distant quantum system entangled with it. In all experiments performed to date, this choice took place either in the past or, in some delayed-choice arrangements, in the future of the interference. Thus, in principle, physical communications between choice and interference were not excluded. Here, we report a quantum eraser experiment in which, by enforcing Einstein locality, no such communication is possible. This is achieved by independent active choices, which are space-like separated from the interference. Our setup employs hybrid path-polarization entangled photon pairs, which are distributed over an optical fiber link of 55 m in one experiment, or over a free-space link of 144 km in another. No naive realistic picture is compatible with our results because whether a quantum could be seen as showing particle- or wave-like behavior would depend on a causally disconnected choice. It is therefore suggestive to abandon such pictures altogether.

10.
Opt Express ; 20(21): 23126-37, 2012 Oct 08.
Article in English | MEDLINE | ID: mdl-23188277

ABSTRACT

We present a high-fidelity quantum teleportation experiment over a high-loss free-space channel between two laboratories. We teleported six states of three mutually unbiased bases and obtained an average state fidelity of 0.82(1), well beyond the classical limit of 2/3. With the obtained data, we tomographically reconstructed the process matrices of quantum teleportation. The free-space channel attenuation of 31 dB corresponds to the estimated attenuation regime for a down-link from a low-earth-orbit satellite to a ground station. We also discussed various important technical issues for future experiments, including the dark counts of single-photon detectors, coincidence-window width etc. Our experiment tested the limit of performing quantum teleportation with state-of-the-art resources. It is an important step towards future satellite-based quantum teleportation and paves the way for establishing a worldwide quantum communication network.


Subject(s)
Optical Devices , Telecommunications/instrumentation , Equipment Design , Equipment Failure Analysis , Light , Quantum Theory , Scattering, Radiation
11.
Nature ; 489(7415): 269-73, 2012 Sep 13.
Article in English | MEDLINE | ID: mdl-22951967

ABSTRACT

The quantum internet is predicted to be the next-generation information processing platform, promising secure communication and an exponential speed-up in distributed computation. The distribution of single qubits over large distances via quantum teleportation is a key ingredient for realizing such a global platform. By using quantum teleportation, unknown quantum states can be transferred over arbitrary distances to a party whose location is unknown. Since the first experimental demonstrations of quantum teleportation of independent external qubits, an internal qubit and squeezed states, researchers have progressively extended the communication distance. Usually this occurs without active feed-forward of the classical Bell-state measurement result, which is an essential ingredient in future applications such as communication between quantum computers. The benchmark for a global quantum internet is quantum teleportation of independent qubits over a free-space link whose attenuation corresponds to the path between a satellite and a ground station. Here we report such an experiment, using active feed-forward in real time. The experiment uses two free-space optical links, quantum and classical, over 143 kilometres between the two Canary Islands of La Palma and Tenerife. To achieve this, we combine advanced techniques involving a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors and entanglement-assisted clock synchronization. The average teleported state fidelity is well beyond the classical limit of two-thirds. Furthermore, we confirm the quality of the quantum teleportation procedure without feed-forward by complete quantum process tomography. Our experiment verifies the maturity and applicability of such technologies in real-world scenarios, in particular for future satellite-based quantum teleportation.

12.
Opt Express ; 19(23): 22723-30, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-22109153

ABSTRACT

We realize quantum gates for path qubits with a high-speed, polarization-independent and tunable beam splitter. Two electro-optical modulators act in a Mach-Zehnder interferometer as high-speed phase shifters and rapidly tune its splitting ratio. We test its performance with heralded single photons, observing a polarization-independent interference contrast above 95%. The switching time is about 5.6 ns, and a maximal repetition rate is 2.5 MHz. We demonstrate tunable feed-forward operations of a single-qubit gate of path-encoded qubits and a two-qubit gate via measurement-induced interaction between two photons.

13.
Proc Natl Acad Sci U S A ; 107(46): 19708-13, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-21041665

ABSTRACT

Bell's theorem shows that local realistic theories place strong restrictions on observable correlations between different systems, giving rise to Bell's inequality which can be violated in experiments using entangled quantum states. Bell's theorem is based on the assumptions of realism, locality, and the freedom to choose between measurement settings. In experimental tests, "loopholes" arise which allow observed violations to still be explained by local realistic theories. Violating Bell's inequality while simultaneously closing all such loopholes is one of the most significant still open challenges in fundamental physics today. In this paper, we present an experiment that violates Bell's inequality while simultaneously closing the locality loophole and addressing the freedom-of-choice loophole, also closing the latter within a reasonable set of assumptions. We also explain that the locality and freedom-of-choice loopholes can be closed only within nondeterminism, i.e., in the context of stochastic local realism.

14.
J Physiol ; 556(Pt 3): 711-26, 2004 May 01.
Article in English | MEDLINE | ID: mdl-14966302

ABSTRACT

Capacitance measurements of exocytosis were applied to functionally identified alpha-, beta- and delta-cells in intact mouse pancreatic islets. The maximum rate of capacitance increase in beta-cells during a depolarization to 0 mV was equivalent to 14 granules s(-1), <5% of that observed in isolated beta-cells. Beta-cell secretion exhibited bell-shaped voltage dependence and peaked at +20 mV. At physiological membrane potentials (up to approximately -20 mV) the maximum rate of release was approximately 4 granules s(-1). Both exocytosis (measured by capacitance measurements) and insulin release (detected by radioimmunoassay) were strongly inhibited by the L-type Ca(2+) channel blocker nifedipine (25 microm) but only marginally (<20%) affected by the R-type Ca(2+) channel blocker SNX482 (100 nm). Exocytosis in the glucagon-producing alpha-cells peaked at +20 mV. The capacitance increases elicited by pulses to 0 mV exhibited biphasic kinetics and consisted of an initial transient (150 granules s(-1)) and a sustained late component (30 granules s(-1)). Whereas addition of the N-type Ca(2+) channel blocker omega-conotoxin GVIA (0.1 microm) inhibited glucagon secretion measured in the presence of 1 mm glucose to the same extent as an elevation of glucose to 20 mm, the L-type Ca(2+) channel blocker nifedipine (25 microm) had no effect. Thus, glucagon release during hyperglycaemic conditions depends principally on Ca(2+)-influx through N-type rather than L-type Ca(2+) channels. Exocytosis in the somatostatin-secreting delta-cells likewise exhibited two kinetically separable phases of capacitance increase and consisted of an early rapid (600 granules s(-1)) component followed by a sustained slower (60 granules s(-1)) component. We conclude that (1) capacitance measurements in intact pancreatic islets are feasible; (2) exocytosis measured in beta-cells in situ is significantly slower than that of isolated cells; and (3) the different types of islet cells exhibit distinct exocytotic features.


Subject(s)
Electric Capacitance , Exocytosis/physiology , Islets of Langerhans/physiology , Somatostatin-Secreting Cells/physiology , Action Potentials/drug effects , Action Potentials/physiology , Animals , Calcium Channels, L-Type/drug effects , Calcium Channels, L-Type/physiology , Calcium Channels, N-Type/drug effects , Calcium Channels, N-Type/physiology , Calcium Channels, R-Type/drug effects , Calcium Channels, R-Type/physiology , Cells, Cultured , Electrophysiology , Exocytosis/drug effects , Glucagon/metabolism , Glucose/pharmacology , Insulin/metabolism , Insulin Secretion , Islets of Langerhans/cytology , Islets of Langerhans/drug effects , Kinetics , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice , Mice, Inbred Strains , Microscopy, Electron, Transmission , Nifedipine/pharmacology , Patch-Clamp Techniques , Pertussis Toxin/pharmacology , Secretory Vesicles/ultrastructure , Somatostatin-Secreting Cells/cytology , Spider Venoms/pharmacology , omega-Conotoxin GVIA/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...