Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 14(40): 9126-9135, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37793127

ABSTRACT

Based on the nonadiabatic molecular dynamics (NAMD) simulations and the first-principles calculations, we explore the overall water-splitting schemes and the photogenerated carrier dynamics for two configurations (CG and CyG) of the CrS3/GeSe van der Waals heterostructures. The photocatalytic direct Z-schemes and carrier migration pathways for hydrogen and oxygen evolution reactions (HER/OER) are constructed based on the electronic properties. The solar-to-hydrogen efficiency (η'STH values) of the schemes can reach 10.60% and 10.17% and further rise under tensile strain. The NAMD results demonstrate similar transfer times of the electron/hole for HER/OER and more rapid electron-hole recombination in CG enables it to be superior to CyG in photocatalytic performance. Moreover, the Gibbs free energy indicates that both the HERs and OERs turn to spontaneously proceed with CG and CyG at pH = 0-12.37 and pH = 2.55-11.01, respectively. These facts reveal that the CrS3/GeSe heterostructure is promising in photocatalytic overall water splitting.

2.
Phys Chem Chem Phys ; 25(17): 12125-12133, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37070289

ABSTRACT

The thermoelectric performance of the CuSbS2 monolayer is determined using the relaxation times obtained from electron-phonon coupling calculations and the transport properties of phonons and electrons. Based on the fully relaxed structure, the lattice thermal conductivity and the electronic transport coefficients are evaluated by solving the Boltzmann transport equation for phonons and electrons under relaxation time approximation, respectively. The tendencies of the transport coefficients depending on the carrier concentrations and temperatures are studied to understand the thermoelectric performance. Based on the bipolar effect, the transport coefficients and intrinsic carrier concentrations, we determined the dimensionless figure of merit ZT in the 300-800 K range. The results demonstrate that the CuSbS2 monolayer should be an p-type semiconductor, and the maximum ZT of 1.36 is obtained, indicating that the monolayer is a good candidate for high-temperature thermoelectric devices. Substantial bipolar effects are observed, and the ones in the x-direction are stronger in comparison to those in the y-direction, which is responsible for the smaller ZT in the x-direction.

3.
Phys Chem Chem Phys ; 25(12): 8861-8870, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36916407

ABSTRACT

The elaborate configuration of the heterostructure is crucial and challenging to achieve high solar-to-hydrogen efficiency or CO2 reduction efficiency . Here, we predict two heterostructures composed of HfSe2, ZrSe2, and GaAs3 monolayers. The maximum of 42.71%/35.12% with the heterostructures can be reached with the perfect match between the bandgap and band edges. The configurations of the heterostructures are discovered from 12 possible stacking types of the three monolayers. The formation energy, potentials of band edges, carrier mobilities, and optical absorption were used to identify the feasibility of the CO2 reduction reaction (CO2RR), the hydrogen evolution reaction (HER), and the oxygen evolution reaction (OER). The and based on overpotentials and bandgaps and the Gibbs free energies (ΔGs) are evaluated to quantificationally access the photocatalytic performance of the constructed heterostructures. The results demonstrate that high can be obtained for the solar photocatalytic Z-schemes with the HfSe2/GaAs3 and ZrSe2/GaAs3 heterostructures, and these values can be further enhanced through strain engineering. Moreover, small changes in ΔGs were observed for HER, OER, and CO2RR. Therefore, the two heterostructures have excellent performance in photocatalytic hydrogen evolution and CO2 reduction. The results of the electronic properties revealed that the delicate matching of the projected band edges of the monolayers in the heterostructures is responsible for the high photocatalytic performance.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120309, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34479026

ABSTRACT

The geometrical configurations of the XBiSe3 (X = Ga, In, Tl) monolayers are identified by employing the first-principles density functional theory calculations, and the stabilities are confirmed by phonon dispersion, formation energy, and ab initio molecular dynamics simulation, respectively. The bandgap and band edges, the density of states, the optical absorption, mobility, and effect of strain engineering are evaluated to understand the photoelectronic properties of the monolayers. The results show that the XBiSe3 monolayers have the indirect bandgaps of 1.14-1.69 (1.20-1.84) eV by HSE06(GW), leading to the enhanced optical absorption from the visible to near-ultraviolet region. The large mobility of the electron and hole are also observed, which is helpful for the separation and transfer of the photogenerated carrier pair. The band edges and bandgaps, as well as the optical absorptions, can effectively be tuned by strain engineering. It should be noted that the band edges of the InBiSe3 monolayer could satisfy the condition of redox potential for the hydrogen evolution reaction under the compressive strain heavier than -3%, implicating this monolayer can also be used for photocatalytic water splitting to produce hydrogen. Therefore, these monolayers have potential applications in photocatalytic materials or photoelectronic devices such as energy harvesters and visible-light sensors.

5.
Langmuir ; 37(46): 13548-13558, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34767722

ABSTRACT

Metal oxide semiconductor (MOS) gas sensors show poor selectivity when exposed to mixed gases. This is a challenge in gas sensors and limits their wide applications. There is no efficient way to detect a specific gas when two homogeneous gases are concurrently exposed to sensing materials. The p-n nanojunction of xSnO2-yCr2O3 nanocomposites (NCs) are prepared and used as sensing materials (x/y shows the Sn/Cr molar ratio in the SnO2-Cr2O3 composite and is marked as SnxCry for simplicity). The gas sensing properties, crystal structure, morphology, and chemical states are characterized by employing an electrochemical workstation, an X-ray diffractometer, a transmission electron microscope, and an X-ray photoelectron spectrometer, respectively. The gas sensing results indicate that SnxCry NCs with x/y greater than 0.07 demonstrate a p-type behavior to both CO and H2, whereas the SnxCry NCs with x/y < 0.07 illustrate an n-type behavior to the aforementioned reduced gases. Interestingly, the SnxCry NCs with x/y = 0.07 show an n-type behavior to H2 but a p-type to CO. The effect of the operating temperature on the opposite sensing response of the fabricated sensors has been investigated. Most importantly, the mechanism of selectivity opposite sensing response is proposed using the aforementioned characterization techniques. This paper proposes a promising strategy to overcome the drawback of low selectivity of this type of sensor.

6.
Luminescence ; 36(8): 1901-1909, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34270167

ABSTRACT

The SiO2 @SiO2 :Tb(1,2-BDC)3 phen microspheres with monodispersed core-shell structure, are kind of fluorescent particles, which are prepared by a seeded growth method under the catalysis of glacial acetic acid (1,2-BDC, 1,2-benzenedicarboxylic acid; phen, 1,10-phenanthroline). Firstly, silica seed was fabricated by the hydrolysis of ethyl orthosilicate, and the Tb(1,2-BDC)3 phen was prepared by using 1,2-BDC and phen. Then, a thin mesoporous silica shell doped with Tb(1,2-BDC)3 phen was grown on the prepared monodisperse silica colloids. The prepared phosphor was analyzed by Fourier-transform infrared spectroscopy, X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, thermogravimetric and fluorescence spectroscopy. The experimental results showed that the diameter of the SiO2 @SiO2 :Tb((1,2-BDC)3 phen microsphere was about 200 nm with a typical core-shell structure, among which the diameter of the silica core was 180 nm, and that of the mesoporous silicon shell doped with terbium complex was about 10 nm. The fluorescence intensity of SiO2 @SiO2 :Tb((1,2-BDC)3 phen microsphere is nearly three times higher than that of Tb((1,2-BDC)3 phen complexes. The prepared microspheres could be widely used in bio-imaging, optoelectronic appliances and medical diagnosis.


Subject(s)
Silicon Dioxide , Terbium , Microscopy, Electron, Transmission , Microspheres , Spectroscopy, Fourier Transform Infrared
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 261: 120013, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34119771

ABSTRACT

Two-dimensional (2D) materials of SiMI4(M = Ge, Sn) monolayers are identified as promising visible-light-driven photocatalyst for hydrogen evolution reaction by DFT calculations. The dynamical and thermal stabilities of the two monolayers are confirmed by the phonon dispersion calculations and ab initiomolecular dynamics (AIMD) simulations, respectively.The results show that the two 2D materials have indirect bandgaps of 2.45 and 2.43 eV, and the band edges can match the hydrogen evolution reaction conditions. Absorption spectra show that the monolayers respond tovisible light and can be tuned by different strains.Besides, the hole and electron mobilitiesare different, which is beneficial for photoelectronic performance. The mechanisms of the hydrogen evolution reaction and the direct water splitting process are also explored. The calculational results support the promising applications of SiMI4(M = Ge, Sn) monolayers asvisible-light-driven photocatalyst of hydrogen production.

8.
Phys Chem Chem Phys ; 23(10): 6042-6050, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33683239

ABSTRACT

Constructing a van der Waals heterostructure is a practical way to promote the conversion efficiency of solar energy. Here, we demonstrate the efficient performance of a GeSe/AsP heterostructure in solar energy cells based on the first-principles calculations. The electronic properties, optical absorption, and optoelectronic properties are calculated to evaluate the efficiency of the newly designed heterostructure. The results indicate that the GeSe/AsP heterostructure possesses a type-II band alignment with an indirect bandgap of 1.10 eV, which greatly promotes the effective separation of photogenerated carriers. Besides, an intrinsic electric field is formed in the direction from the AsP to GeSe monolayer, which is beneficial to prevent the recombination of the photogenerated electron-hole pair. Simultaneously, a strong optical absorption is observed in the visible light range. The predicted power conversion efficiency (PCE) of the GeSe/AsP heterostructure is 16.0% and can be promoted to 17.3% by applying 1% biaxial compression strain. The present results indicate that the GeSe/AsP heterostructure is a promising candidate material for high-performance solar cells.

9.
Phys Chem Chem Phys ; 23(3): 2392-2397, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33458723

ABSTRACT

Direct laser cooling is a very promising method to obtain cold molecules for various applications. However, a molecule with satisfactory electronic and optical properties for the optical scheme is difficult to identify. By suggesting criteria for the qualified molecules, we develop a method to identify the suitable polyatomic molecules for direct laser cooling. The new criteria from the equilibrium geometrical structures and fundamental frequencies of the ground and low-lying excited states are used to replace the past ones based on Franck-Condon factors. The new method can rapidly identify the preferable one among many candidate polyatomic molecules based on ab initio calculations because the new criteria are free from the construction of potential energy surfaces. The method is testified by using triatomic molecules containing OH. All the reported and two new molecules suitable for direct laser cooling are identified by comparing 168 electronic states of 28 molecules with the new criteria. The newly found molecules have been confirmed using the Franck-Condon factors from the construction of potential energy surfaces. Finally, the optical schemes for the direct laser cooling of the SOH and SeOH molecules are established.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 250: 119229, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33257238

ABSTRACT

Direct laser cooling molecule is useful way to obtain the accurate molecular spectroscopy. However, most of the reported direct laser cooling schemes are only involved the molecules with a singlet or doublet ground state because the one with a triplet ground state is more complex, especially when the first-excited state is not suitable for the pseudo-closed loop transition. Using NH as the prototype of the simplest heteronuclear molecule with a triplet ground state, we focus on constructing the direct laser cooling scheme with a pseudo-closed loop triplet-triplet transition including intervening electronic states. The potential energy curves and transition dipole moments are calculated for the X3Σ-, a1Δ, b1Σ+, and A3Π states by using the multireference configuration interaction including spin-orbit coupling with the aug-cc-pV5Z basis sets. The rotational and vibrational energy levels of each electronic state are obtained by solving the Schrödinger equation of nuclear motion with the obtained potential energy curves. A two-color laser cooling scheme is established based on the 3Π1 â†’ X3Σ- transition because the highly diagonal Franck-Condon factors make the transition suitable for constructing the pseudo-closed loop transition. The radiative lifetimes, the Doppler temperature, and the recoil temperature are calculated to access the cooling effect of the optical scheme. The results demonstrate that the 3Π1 â†’ X3Σ- transition is much superior to the other transitions and the intervening a1Δ and b1Σ+ will not significantly impact the pseudo-closed loop transition of the laser cooling scheme. The accumulate FCF reach 0.99996 implies that about 25,000 scattering photons are available before leaking, which can cool the NH molecule to the Doppler temperature of 20.2 µK.

11.
J Phys Condens Matter ; 33(9): 095501, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33207328

ABSTRACT

The remarkable thermoelectric performance is predicted for half-Heusler (HH) compounds of CuLiX (X = Se, Te) based on the first-principles calculation, the deformation potential (DP) theory, and semi-classical Boltzmann theory. The Slack model is employed to evaluate the lattice thermal conductivity and the result is in good agreement with the previously reported data. The results of mechanical properties demonstrate that CuLiSe is ductile but CuLiTe is brittle. The relaxation time and the carrier mobility are calculated with DP theory. The electrical and thermal conductivities are obtained by using the semi-classical Boltzmann theory based on the relaxation approximation. The Seebeck coefficient and power factor are obtained and their characters are analyzed. The dimensionless figure of merits (ZT) is obtained for the p- and n-type CuLiX. The maximum ZT of 2.65 can be achieved for n-type CuLiTe at the carrier concentration of 3.19 × 1019 cm-3 and 900 K, which indicates that this compound is a very promising candidate for the highly efficient thermoelectric materials.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 239: 118459, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32474368

ABSTRACT

The photocatalytic properties of LiCoO2 are not explored up to date although its cubic and trigonal structures are explored experimentally. Here, we investigate the feasibility of photocatalytic hydrogen production from water splitting driven by the tetragonal, trigonal, hexagonal and cubic LiCoO2 with the irradiation of the visible light. The band structure, density of state, optical absorption and mobility are calculated by the first-principles density functional theory. The results show that the band edges of all the four structures of LiCoO2 match to the conditions of the redox potentials of water splitting reaction and the enhanced optical absorption in the visible light range is observed. The obvious difference between the mobilities of the hole and electron are identified, especially for the cubic LiCoO2. All the obtained results suggest that the considered structures of LiCoO2 are promising candidates for the photocatalytic water splitting to produce hydrogen with the irradiation of the visible light.

13.
J Phys Condens Matter ; 32(34): 345501, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32252030

ABSTRACT

We predict a high thermoelectric efficiency of HfTe5, based on the first-principles calculations of the electronic structure and thermal conductivity, and the transport coefficients obtained by using the semi-classical Boltzmann transport theory in a wide temperature and carrier concentration range. The lattice thermal conductivity is calculated based on the Slack model and the result is in good agreement with the experimental value. The results of all the thermoelectric transport coefficients demonstrate anisotropic characteristics with the obvious small values along with the b direction. The figure of merit ZT computed with a temperature-dependent relaxation time can reach 2.68 along with the c direction of the n-type HfTe5 at 300 K and an optimal carrier concentration of 5.80 × 1019 cm-3. The Seebeck thermopower coefficients are between 100 and 300 µV K-1 at the optimal carrier concentration, but can reach nearly 1000 µV K-1 at low concentration. Therefore, HfTe5 could achieve high thermoelectric performance at room temperature by controlling the transport direction and carrier concentration.

14.
Proc Natl Acad Sci U S A ; 117(7): 3375-3381, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32019883

ABSTRACT

When a colloidal suspension is dried, capillary pressure may overwhelm repulsive electrostatic forces, assembling aggregates that are out of thermal equilibrium. This poorly understood process confers cohesive strength to many geological and industrial materials. Here we observe evaporation-driven aggregation of natural and synthesized particulates, probe their stability under rewetting, and measure bonding strength using an atomic force microscope. Cohesion arises at a common length scale (∼5 µm), where interparticle attractive forces exceed particle weight. In polydisperse mixtures, smaller particles condense within shrinking capillary bridges to build stabilizing "solid bridges" among larger grains. This dynamic repeats across scales, forming remarkably strong, hierarchical clusters, whose cohesion derives from grain size rather than mineralogy. These results may help toward understanding the strength and erodibility of natural soils, and other polydisperse particulates that experience transient hydrodynamic forces.


Subject(s)
Colloids/chemistry , Soil/chemistry , Hydrodynamics , Particle Size , Static Electricity
15.
ACS Appl Mater Interfaces ; 12(5): 5838-5846, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31922710

ABSTRACT

The thermoelectric materials with high values of the dimensionless figure of merit (ZT) are among the most important new energy resources. Too much attention has been paid to the search of high-ZT thermoelectric materials, and the one with ZT = 5 has been reported recently. Here, a remarkably high ZT = 7.38 is predicted for the n-type half-Heusler compound of BCaGa at 700 K. To understand the high-ZT behavior, we studied electronic properties of BXGa (X = Be, Mg, and Ca) with first-principles calculations based on the density functional theory. The stabilities of the structures of BXGa (X = Be, Mg, and Ca) are confirmed by phonon dispersion. The transport properties are determined by the semiclassical Boltzmann transport theory. We evaluate the relaxation time by using the deformation potential theory and the lattice thermal conductivity based on the elastic coefficients. The results demonstrate that such a high efficiency of BCaGa arises from the intrinsic coordination of the ultralow lattice and electronic thermal conductivity and the larger power factor at certain carrier concentration and temperature. The high n-type power factor originates from the large relaxation time, which results in a light, twofold degenerate conduction-band pocket at the Γ point. In contrast, the power factors of BBeGa and BMgGa are smaller because of their flat-and-dispersive valence band. It is expected that the remarkable results for BXGa could encourage more experimental and theoretical investigations to develop efficient thermoelectric materials with BXGa.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 230: 118068, 2020 Apr 05.
Article in English | MEDLINE | ID: mdl-31958607

ABSTRACT

ZnO monolayer possesses band structure matching the conditions of water splitting for hydrogen generation but cannot well response to the visible light, while CdO one, contrariwise, have obvious optical absorption in the visible light range but no satisfactory band edges for the water splitting to produce hydrogen. Here, we predict a two-dimensional ZnCdO2 structure comprising of ZnO and CdO ones to achieve their strengths. The band structures, optical properties, carrier mobility, and the strain engineering for ZnCdO2, ZnO and CdO monolayers are investigated by using the first-principles hybridization functional calculations. The results demonstrate that the two-dimensional ZnCdO2 structure is a promising candidate for water splitting to produce hydrogen. All the structures show a direct band energy gap and the character remains unchanged under the considered biaxial strains. All the conduction band minimums are suitable for water splitting reaction even under the -4% to +4% strain. Moreover, the valence band maximum of ZnCdO2 monolayer matches the conditions of the water-splitting reaction under the -2% to +4% strain. Interestingly, the unsatisfactory valence band maximum of CdO monolayer can be overcome by strain larger than +2%. As expected, the enhanced optical absorption in the visible light range is observed for the ZnCdO2 monolayer. Additionally, the mobilities of the hole and the electron are significantly different for the three monolayers, implying that the low recombination ratio of the photogenerated carrier pairs is available, which is also beneficial for the photocatalytic performance. Therefore, ZnCdO2 monolayer and CdO monolayer (with tensile strain larger than 2%) is a promising candidate for the water splitting to produce hydrogen under the irradiation of the solar light.

17.
J Phys Condens Matter ; 32(5): 055001, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-31604336

ABSTRACT

The exploration of new monolayer materials always attracts much attention due to the extraordinary properties and promising applications. Here we predict two monolayered aluminum triphosphides (AlP3) with C2/m and P3m1 space groups with a tunable bandgap under strain as the new members of the 2D XP3 family by using the first principles calculations. The stabilities of the predicted structures are confirmed with the phonon dispersion curves and molecular dynamics. Unlike the narrow bandgaps of the reported XP3 monolayers, the larger bandgaps of 1.78 (HSE06) or 1.91 eV (G0W0) for C2/m and 1.42 (HSE06) or 2.14 eV (G0W0) for P3m1 AlP3 monolayers are observed. The high mobility of 1.01 × 105 and 1.62 × 104 cm2 V-1 s-1 are observed for the electron of P3m1 and the hole of C2/m. The optical absorptions of the AlP3 monolayers, in particular, the one with C2/m, are obviously strong in the visible light range. These results imply that the monolayers are promising in the optoelectronic application. Unfortunately, the undesirable band edges make them not suitable for water splitting in spite of the strong optical absorption coefficient in the visible light range. However, an obvious effect of strain engineering is demonstrated for the monolayers. Under -2% and -3% biaxial strain, the band edges of P3m1 AlP3 can straddle the redox potential of water and meet the requirement of photocatalytic water splitting. Therefore, the P3m1 AlP3 monolayer can also be a promising candidate for the photocatalytic water splitting to produce hydrogen driven by the visible light.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117721, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-31718980

ABSTRACT

The potential energy curves and the transition dipole moments for seven electronic states of SrBr molecule are obtained via the multi-reference configuration interaction method and the all-electron basis sets. The Davidson and relativistic corrections are also included. Based on the obtained potential energy curves, the rotational and vibrational energy levels of each electronic state are determined by solving the nuclear motion equation of the molecule. The spectroscopic parameters are fitted from the obtained energy levels by using Dunham expression. Moreover, the spin-orbit coupling splits of the A2Π state are considered to construct the optical laser cooling scheme. The Frank-Condon factors, radiation lifetimes, radiation widths between the ground electronic state and 2Π1/2, 3/2/B2Σ+ states are calculated. Then, the feasibility of laser cooling is explored and the optical scheme is proposed. The results demonstrate that the SrBr molecule is a promising candidate for laser cooling.

20.
Article in English | MEDLINE | ID: mdl-30878847

ABSTRACT

The feasibility of the hybrid nanocomposites of the graphene quantum dot (GQD) and carbazole-carbazole dyes as the efficient sensitizer of dye-sensitized solar cells (DSSC) is investigated. By using the first principles density functional theory (DFT), we fully optimize the geometrical structures of GQD, the carbazole-carbazole dyes, and their hybrid nanocomposites. The harmonic frequency analysis is used to confirm the energy stability of the optimized structures. The optical absorptions of the structures are calculated with the time-dependent DFT (TDDFT). Using the I-/I3- electrolyte and the conduction band minimum of TiO2 electrode as a sample, we examine the feasibility of the nanocomposites as the sensitizer of DSSC with the charge spatial separation and the molecular orbital energy levels of the nanocomposites. The results demonstrate all the considered nanocomposites have suitable energy levels of the frontier orbitals and significantly charge spatial separation. TDDFT results show the oscillator strengths of all nanocomposites demonstrate the obvious enhancement in the visible light region. Moreover, the appropriate open-circuit voltage value, the larger light-harvesting efficiency, and larger driving force are also identified for these nanocomposites. Therefore, the nanocomposites could be the more promising candidates of sensitizer for DSSC in comparison with the separate carbazole-carbazole dyes.

SELECTION OF CITATIONS
SEARCH DETAIL
...