Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 167: 107598, 2023 12.
Article in English | MEDLINE | ID: mdl-37913614

ABSTRACT

Unsupervised deep learning techniques have gained increasing popularity in deformable medical image registration However, existing methods usually overlook the optimal similarity position between moving and fixed images To tackle this issue, we propose a novel hierarchical cumulative network (HCN), which explicitly considers the optimal similarity position with an effective Bidirectional Asymmetric Registration Module (BARM). The BARM simultaneously learns two asymmetric displacement vector fields (DVFs) to optimally warp both moving images and fixed images to their optimal similar shape along the geodesic path. Furthermore, we incorporate the BARM into a Laplacian pyramid network with hierarchical recursion, in which the moving image at the lowest level of the pyramid is warped successively for aligning to the fixed image at the lowest level of the pyramid to capture multiple DVFs. We then accumulate these DVFs and up-sample them to warp the moving images at higher levels of the pyramid to align to the fixed image of the top level. The entire system is end-to-end and jointly trained in an unsupervised manner. Extensive experiments were conducted on two public 3D Brain MRI datasets to demonstrate that our HCN outperforms both the traditional and state-of-the-art registration methods. To further evaluate the performance of our HCN, we tested it on the validation set of the MICCAI Learn2Reg 2021 challenge. Additionally, a cross-dataset evaluation was conducted to assess the generalization of our HCN. Experimental results showed that our HCN is an effective deformable registration method and achieves excellent generalization performance.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Neuroimaging
2.
Comput Med Imaging Graph ; 108: 102263, 2023 09.
Article in English | MEDLINE | ID: mdl-37487363

ABSTRACT

Deformable medical image registration can achieve fast and accurate alignment between two images, enabling medical professionals to analyze images of different subjects in a unified anatomical space. As such, it plays an important role in many medical image studies. Current deep learning (DL)-based approaches for image registration directly learn spatial transformation from one image to another, relying on a convolutional neural network and ground truth or similarity metrics. However, these methods only use a global similarity energy function to evaluate the similarity of a pair of images, which ignores the similarity of regions of interest (ROIs) within the images. This can limit the accuracy of the image registration and affect the analysis of specific ROIs. Additionally, DL-based methods often estimate global spatial transformations of images directly, without considering local spatial transformations of ROIs within the images. To address this issue, we propose a novel global-local transformation network with a region similarity constraint that maximizes the similarity of ROIs within the images and estimates both global and local spatial transformations simultaneously. Experiments conducted on four public 3D MRI datasets demonstrate that the proposed method achieves the highest registration performance in terms of accuracy and generalization compared to other state-of-the-art methods.


Subject(s)
Magnetic Resonance Imaging , Neural Networks, Computer , Humans , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...