Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Small ; : e2307521, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212279

ABSTRACT

Chimeric antigen receptor natural killer (CAR-NK) cell therapy represents a potent approach to suppressing tumor growth because it has simultaneously inherited the specificity of CAR and the intrinsic generality of NK cells in recognizing cancer cells. However, its therapeutic potency against solid tumors is still restricted by insufficient tumor infiltration, immunosuppressive tumor microenvironments, and many other biological barriers. Motivated by the high potency of puerarin, a traditional Chinese medicine extract, in dilating tumor blood vessels, an injectable puerarin depot based on a hydrogen peroxide-responsive hydrogel comprising poly(ethylene glycol) dimethacrylate and ferrous chloride is concisely developed. Upon intratumoral fixation, the as-prepared puerarin depot (abbreviated as puerarin@PEGel) can activate nitrogen oxide production inside endothelial cells and thus dilate tumor blood vessels to relieve tumor hypoxia and reverse tumor immunosuppression. Such treatment can thus promote tumor infiltration, survival, and effector functions of customized epidermal growth factor receptor (HER1)-targeted HER1-CAR-NK cells after intravenous administration. Consequently, such puerarin@PEGel-assisted HER1-CAR-NK cell treatment exhibits superior tumor suppression efficacy toward both HER1-overexpressing MDA-MB-468 and NCI-H23 human tumor xenografts in mice without inducing obvious side effects. This study highlights a potent strategy to activate CAR-NK cells for augmented treatment of targeted solid tumors through reprogramming tumor immunosuppression.

2.
Quant Imaging Med Surg ; 13(12): 8478-8488, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38106248

ABSTRACT

Background: Diffusion-weighted imaging (DWI) is valuable in the screening, diagnosis, and grading of breast lesions. However, conventional DWI (C-DWI) is prone to chemical shift and distortion. ZOOMit DWI (Z-DWI), as an advanced magnetic resonance imaging (MRI) technique, applies two spatially selective parallel excitation pulses to focus sampling in the hope of obtaining more valuable information. This study aimed to evaluate and compare the image quality and feasibility of Z-DWI with those of C-DWI in breast lesions. Methods: The study included 51 patients with breast lesions who underwent breast MRI from May 2021 to February 2022. All patients received Z-DWI and C-DWI sequences, with b values selected as 50 and 800 s/mm2 (Z-DWIb50, Z-DWIb800, C-DWIb50, and C-DWIb800). Apparent diffusion coefficient (ADC) values based on Z-DWI and C-DWI were calculated. For qualitative analysis, four image quality parameters were selected and assessed on a 4-point Likert scale (1 = poor and 4 = excellent). For quantitative analysis, ADC, relative ADC (rADC), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and tumor-to-parenchymal contrast (TPC) values were selected for comparison. Results: Z-DWI had higher scores compared to C-DWI in terms of lesion conspicuity, anatomical details, distortion and artifacts, and overall image quality (P<0.05). Meanwhile, the agreement between the two readers was reasonably good [intraclass correlation coefficient (ICC) range, 0.360-0.881]. The SNR of Z-DWIb800 was better than that of C-DWIb800 (P<0.001). The Z-DWI ADC and rADC values of breast lesions were statistically significantly lower than those of C-DWI (mean ADC: P<0.001; rADC; P=0.005). Conclusions: Z-DWI sequences were shown to have superior image quality. The ADC map of Z-DWI is more conducive to the imaging evaluation of breast lesions.

3.
J Mater Chem B ; 10(21): 4096-4104, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35521641

ABSTRACT

Development of an intelligent and versatile delivery system to achieve tumor-targeted delivery and controlled release of diverse functional moieties is of great significance to realize precise cancer theranostics. In this study, we use pH-dissociable calcium carbonate-polydopamine (pCaCO3) nanocomposites as a template to guide the formation of a lipid bilayer on their surface, yielding lipid-coated pCaCO3 nanoparticles with high loading efficacies towards gadolinium ions (Gd3+), doxorubicin (DOX) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR). The obtained liposomal nanotheranostics show excellent physiological stability and pH-dependent release of DOX and Gd3+; the latter could lead to pH-dependent T1 signal enhancement under magnetic resonance (MR) imaging, as well as efficient photothermal conversion efficacy. Then, we found that tumors in mice with intravenous injection of DiR-DOX-Gd@pCaCO3-PEG could be clearly visualized in a real-time manner by recording their near-infrared (NIR) fluorescence and T1 MR signal. Furthermore, treatment with such liposomal nanotheranostics injection and NIR laser irradiation could enable collective suppression of the growth of 4T1 tumors in Balb/c mice via combined chemo- and photothermal therapies. Therefore, this work highlights the concise preparation of lipid-coated pCaCO3 nanocomposites, which could be utilized for the construction of diverse cancer nanotheranostics by exploiting their versatile loading capacities.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Animals , Doxorubicin/pharmacology , Hydrogen-Ion Concentration , Hyperthermia, Induced/methods , Lipids , Mice , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Phototherapy/methods
4.
Hum Vaccin Immunother ; 18(5): 2067421, 2022 11 30.
Article in English | MEDLINE | ID: mdl-35471842

ABSTRACT

The human papillomavirus (HPV) vaccine is the simplest, most economical, convenient, and effective method of preventing cervical cancer. However, the current HPV vaccine is supplied as a single-dose vial with a relatively high cost per dose, which hinders its supply to low- and middle-income countries (LMICs), where the demand for HPV vaccine is highest. Therefore, it is necessary to develop a multi-dose HPV vaccine to promote large-scale affordable vaccination in LMICs. Moreover, the addition of preservatives is required to reduce the risk of microbial contamination in multi-dose vaccines within a single vial. In this study, we investigated the effects of six preservatives on HPV 16L1 and 18L1 virus-like particles in solution, as well as the aluminum adsorption status, under normal and high-temperature conditions. Multiple methods were employed, including dynamic light scattering, differential scanning calorimetry, an in vitro relative potency assay, and an in vivo potency assay in mice. Based on the above results, four types of selected preservatives were further studied, and an antimicrobial effectiveness test was performed on the HPV-2 vaccine, which was employed as a model HPV vaccine. Finally, three preservatives were selected based on their performance to evaluate the long-term stability of the HPV-2 vaccine. The results indicated that 0.12% methylparaben is the most suitable preservative for the multi-dose HPV-2 vaccine, guaranteeing the shelf life for at least three years and meeting "B" standards for antimicrobial effectiveness. The formula developed in this study can contribute toward combating cervical cancer in LMICs.


Subject(s)
Papillomavirus Infections , Papillomavirus Vaccines , Parabens , Alphapapillomavirus , Animals , Cost-Benefit Analysis , Female , Humans , Mice , Papillomavirus Infections/prevention & control , Preservatives, Pharmaceutical , Uterine Cervical Neoplasms/prevention & control , Vaccination
5.
Vaccine ; 39(31): 4296-4305, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34167837

ABSTRACT

Enterovirus 71 (EV71) is one of the major causative agents for hand, foot and mouth disease (HFMD) in children. Currently, three inactivated EV71 vaccines have been approved by Chinese government. We previously demonstrated that recombinant EV71 virus-like particles (VLP) produced in Pichia pastoris can be produced at a high yield with a simple manufacturing process, and the candidate vaccine elicited protective humoral immune responses in mice. In present study, the nonclinical immunogenicity, efficacy and toxicity of the EV71 vaccine was comprehensively evaluated in rodents and non-human primates. The immunogenicity assessment showed that EV71 VLPs vaccine elicited high and persistent neutralizing antibody responses, which could be comparable with a licensed inactivated vaccine in animals. The immune sera of vaccinated mice also exhibited cross-neutralization activities to the heterologous subtypes of EV71. Both passive and maternal antigen specific antibodies protected the neonatal mice against the lethal EV71 challenge. Furthermore, nonclinical safety assessment of EV71 VLP vaccine showed no signs of systemic toxicity in animals. Therefore, the excellent immunogenicity, efficacy and toxicology data supported further evaluation of the VLP-based EV71 vaccine in humans.


Subject(s)
Enterovirus A, Human , Enterovirus Infections , Enterovirus , Hand, Foot and Mouth Disease , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , Enterovirus Infections/prevention & control , Hand, Foot and Mouth Disease/prevention & control , Mice , Saccharomycetales
6.
Adv Sci (Weinh) ; 8(4): 2003205, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33643800

ABSTRACT

Triple negative breast cancer (TNBC), with its lack of targeted therapies, shows the worst mortality rate among all breast cancer subtypes. Clusterin (CLU) is implicated to play important oncogenic roles in cancer via promoting various downstream oncogenic pathways. Here, protein kinase D3 (PRKD3) is defined to be a key regulator of CLU in promoting TNBC tumor growth. Mechanically, PRKD3 with kinase activity binding to CLU is critical for CLU protein stability via inhibiting CLU's lysosomal distribution and degradation. CLU and PRKD3 protein level are significantly elevated and positively correlated in collected TNBC tumor samples. CLU silencer (OGX-011) and PRKDs inhibitor (CRT0066101) can both result in impressive tumor growth suppression in vitro and in vivo, suggesting targeting CLU and its key regulator-PRKD3 are promisingly efficient against TNBC. Finally, secreted CLU (sCLU) is found to be elevated in serums from TNBC patients and reduced in serum from TNBC murine models post OGX-011 and/or CRT0066101 treatment, suggesting serum sCLU is a promising blood-based biomarker for clinical management of TNBC. Taken together, this study provides a thorough molecular basis as well as preclinical evidences for targeting CLU pathway as a new promising strategy against TNBC via revealing PRKD3 as the key regulator of CLU in TNBC.

7.
Inorg Chem ; 60(6): 4047-4057, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33666413

ABSTRACT

Solvothermal reactions of Co(NO3)2·6H2O, 3-amino-1,2,4-triazole, and 1,2,4,5-benzenetetracarboxylic acid afforded a Co-MOF: {[Co2(Hatz)(bta)]·H2O}n. Furthermore, a unique metal-organic-framework-based pine-needle-like nanocluster hierarchical architecture has been rationally designed and prepared on a nickel foam skeleton via a simple solvothermal method based on the Co(OH)F intermediate and directly adopted as an optimum bifunctional electrocatalyst for overall water splitting. The Co-MOF/NF exhibited enhanced catalytic performance for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). The optimized catalyst reveals the highest electrocatalytic characteristics, affording current densities of 50 mA cm-2 at an overpotential of 266 mV for the OER and 10 mA cm-2 at an overpotential of 115 mV forthe HER in 1 M KOH. Meanwhile, the catalyst exhibits an ultrastability in the OER process and long-term test at 20 mA cm-2 for 100 h led to only a 9.4% increase in overpotential. Furthermore, an electrolytic cell assembled from the bifunctional Co-MOF/NF delivers a current density of 10 mA cm-2 at a cell voltage of 1.548 V. This excellent performance is believed to be the result of the exotic pine-needle-like nanocluster structure with effective accessibility of dense catalytically active sites, as well as the high specific surface area and the promotion of reversible chemisorption for oxygen species due to the linkers interacting with Co ions. Further SEM, TEM, and XPS analyses of the catalyst after OER stability tests reveal that the formation of Co3O4 on the surface and unconsolidated architecture withinthe electrode materials are responsible for the high catalytic activity. This work extends the applications of MOFs in the field of electrocatalysis.

8.
J Cancer ; 12(3): 735-739, 2021.
Article in English | MEDLINE | ID: mdl-33403031

ABSTRACT

Protein kinase D3 (PRKD3), a serine/threonine kinase, belongs to protein kinase D family, which contains three members: PRKD1, PRKD2, and PRKD3. PRKD3 is activated by many stimuli including phorbol esters, and G-protein-coupled receptor agonists. PRKD3 promotes cancer cell proliferation, growth, migration, and invasion in various tumor types including colorectal, gastric, hepatic, prostate, and breast cancer. Accumulating data supports that PRKD3 is a promising therapeutic target for treatment of cancer. This review discusses the functions and mechanisms of PRKD3 in promoting tumorigenesis and tumor progression of various tumor types as well as the latest developments of small-molecule inhibitors selection for PRKD/PRKD3.

9.
J Cell Mol Med ; 24(3): 2135-2144, 2020 02.
Article in English | MEDLINE | ID: mdl-31944568

ABSTRACT

Breast cancer is the second leading death cause of cancer death for all women. Previous study suggested that Protein Kinase D3 (PRKD3) was involved in breast cancer progression. In addition, the protein level of PRKD3 in triple-negative breast adenocarcinoma was higher than that in normal breast tissue. However, the oncogenic mechanisms of PRKD3 in breast cancer is not fully investigated. Multi-omic data showed that ERK1/c-MYC axis was identified as a major pivot in PRKD3-mediated downstream pathways. Our study provided the evidence to support that the PRKD3/ERK1/c-MYC pathway play an important role in breast cancer progression. We found that knocking out PRKD3 by performing CRISPR/Cas9 genome engineering technology suppressed phosphorylation of both ERK1 and c-MYC but did not down-regulate ERK1/2 expression or phosphorylation of ERK2. The inhibition of ERK1 and c-MYC phosphorylation further led to the lower protein level of c-MYC and then reduced the expression of the c-MYC target genes in breast cancer cells. We also found that loss of PRKD3 reduced the rate of the cell proliferation in vitro and tumour growth in vivo, whereas ectopic (over)expression of PRKD3, ERK1 or c-MYC in the PRKD3-knockout breast cells reverse the suppression of the cell proliferation and tumour growth. Collectively, our data strongly suggested that PRKD3 likely promote the cell proliferation in the breast cancer cells by activating ERK1-c-MYC axis.


Subject(s)
Breast Neoplasms/genetics , Cell Proliferation/genetics , DNA-Activated Protein Kinase/genetics , Mitogen-Activated Protein Kinase 3/genetics , Proto-Oncogene Proteins c-myc/genetics , Animals , Breast/pathology , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , Oncogenes/genetics , Phosphorylation/genetics , Signal Transduction/genetics
10.
Hum Vaccin Immunother ; 16(7): 1602-1610, 2020 07 02.
Article in English | MEDLINE | ID: mdl-31403352

ABSTRACT

Enterovirus 71 (EV71) is one of the major causative agents for hand, foot and mouth disease (HFMD) in children. Although there are three inactivated virus-based HFMD vaccines licensed in China, alternative approaches have been taken to produce an effective and safer vaccine that is easier to manufacture in large scale. Among these, a virus-like particles (VLPs) based EV71 vaccine is under active development. For this purpose, an efficient methodology for the production of EV71-VLPs by recombinant technology is needed. We here report the construction and expression of the P1 and 3C genes of EV71 in Pichia pastoris for producing VLP-based EV71 vaccine antigen with a high yield and simple manufacturing process. Based on codon-optimized P1 and 3C genes, EV71-VLPs were efficiently expressed in Pichia pastoris system, and the expression level reached 270 mg/L. Biochemical and biophysical analyses showed that the produced EV71-VLPs consisted of processed VP0, VP1, and VP3 present as ~35nm spherical particles. The immune response as a function of EV71-VLPs and adjuvant dose ratio was investigated for vaccine development. Immunization with EV71-VLPs of 1-5 µg/dose and adjuvant of 225 µg/dose induced robust neutralizing antibody responses in mice and provided effective protection against lethal challenge in both maternally transferred antibody and passive transfer protection mouse models. Therefore, the yeast produced EV71-VLPs antigen is a promising candidate for the development of a vaccine against HFMD.


Subject(s)
Enterovirus A, Human , Enterovirus , Hand, Foot and Mouth Disease , Vaccines, Virus-Like Particle , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , China , Enterovirus A, Human/genetics , Hand, Foot and Mouth Disease/prevention & control , Mice , Saccharomycetales , Vaccines, Virus-Like Particle/genetics , Viral Vaccines/genetics
11.
Cell Physiol Biochem ; 52(3): 382-396, 2019.
Article in English | MEDLINE | ID: mdl-30845378

ABSTRACT

BACKGROUND/AIMS: Breast cancer is clinically classified into three main subtypes: estrogen receptor-positive (ER+) breast cancer, human epidermal growth factor receptor 2-positive (HER2+) breast cancer, and triple-negative breast cancer (TNBC). Without specific targeted therapies, patients with TNBC have poorer prognosis compared with those with ER+ and HER2+ breast cancer. Protein kinase D (PRKD) family members play crucial roles in cancer progression. CRT0066101, a PRKD inhibitor, has been reported to have anticancer activity in many cancer types. Nevertheless, the role and mechanism of CRT0066101 in TNBC have not been well investigated. METHODS: The expression level of PRKDs was analyzed in breast cancer samples and breast cancer cell lines. The effects of inhibiting PRKD activity with CRT0066101 on TNBC cell proliferation, cell cycle, apoptosis, and tumor growth were studied by Cell Counting Kit8 assay, cell cycle assay, propidium iodide/annexin-V assay, and a xenograft mouse model, respectively. To uncover the molecular mechanism of CRT0066101 in TNBC, comparative phosphoproteomic analysis using iTRAQ was employed. RESULTS: We found that PRKD2 and PRKD3 were preferentially expressed in breast cancers. Immunohistochemistry confirmed the overexpression of PRKD2 and PRKD3 in TNBC. CRT0066101, which inhibited the activity of PRKDs, dramatically inhibited proliferation, increased apoptosis and the G1-phase population of TNBC cells in vitro, and reduced breast tumor volume in vivo. Comparative phosphoproteomic analysis between breast cancer cells with and without CRT0066101 treatment revealed that the anti-breast cancer effects involved regulation of a complex network containing multiple enriched pathways and several hub-nodes contributing to multiple cancer-related processes, thus explaining the described effects of CRT0066101 on TNBC in vitro and in vivo. Finally, we validated several targets of PRKD inhibition by treatment with CRT0066101 and small interfering RNAs against PRKD2 and PRKD3 (siPRKD2 and siPRKD3), including p-MYC(T58/ S62), p-MAPK1/3(T202/Y204), p-AKT(S473), p-YAP(S127), and p-CDC2(T14). CONCLUSION: PRKD inhibitor CRT0066101 exhibits anti-TNBC effects via modulating a phosphor-signaling network and inhibiting the phosphorylation of many cancer-driving factors, including MYC, MAPK1/3, AKT, YAP, and CDC2, providing insight into the important roles as well as the molecular mechanism of CRT0066101 as an effective drug for TNBC.


Subject(s)
Apoptosis/drug effects , Pyrimidines/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Female , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Mice , Mice, Nude , Phosphopeptides/analysis , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/genetics , Protein Kinase C/metabolism , Proteomics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Pyrimidines/metabolism , Pyrimidines/therapeutic use , RNA Interference , RNA, Small Interfering/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
12.
Cancer Med ; 8(2): 729-741, 2019 02.
Article in English | MEDLINE | ID: mdl-30652415

ABSTRACT

Protein Kinase D (PKD) family contains PKD1, PKD2, and PKD3 in human. Compared to consistent tumor-suppressive functions of PKD1 in breast cancer, how PKD2/3 functions in breast cancer are not fully understood. In the current study, we found that PKD2 and PKD3 but not PKD1 were preferentially overexpressed in breast cancer and involved in regulating cell proliferation and metastasis. Integrated phosphoproteome, transcriptome, and interactome showed that PKD2 was associated with multiple cancer-related pathways, including adherent junction, regulation of actin cytoskeleton, and cell cycle-related pathways. ELAVL1 was identified as a common hub-node in networks of PKD2/3-regulated phosphoproteins and genes. Silencing ELAVL1 inhibited breast cancer growth in vitro and in vivo. Direct interaction between ELAVL1 and PKD2 or PKD3 was demonstrated. Suppression of PKD2 led to ELAVL1 translocation from the cytoplasm to the nucleus without significant affecting ELAVL1 expression. Taken together, we characterized the oncogenic functions of PKD2/3 in breast cancer and their association with cancer-related pathways, which shed lights on the oncogenic roles and mechanisms of PKDs in breast cancer.


Subject(s)
Breast Neoplasms/genetics , Protein Kinase C/genetics , Protein Kinases/genetics , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression Profiling , Humans , Mice , Oncogenes , Protein Kinase C/metabolism , Protein Kinase D2 , Protein Kinases/metabolism , Signal Transduction
13.
Zhonghua Yi Xue Za Zhi ; 94(29): 2247-50, 2014 Aug 05.
Article in Chinese | MEDLINE | ID: mdl-25391864

ABSTRACT

OBJECTIVE: To evaluate the feasibility of low radiation exposure and low contrast medium volume for coronary CT angiography with High- pitch spiral acquisition mode of dual source CT. METHODS: 135 patients whose BMI <23 kg/m² and heart rates <65 bpm selected from 291 patients diagnosed of suspected CHD at our institution from September 2013 to February 2014 were randomly divided into 3 groups before CCTA, and there were 45 patients in each group. 80 kV , Iodixanol (320 mgI/ml) and sinogram affirmed iterative reconstruction (SAFIRE) were used in A group. 80 kV , Iopamidol (370 mgI/ml) and SAFIRE were used in B group. 100 kV, Iodixanol and filtered back projection (FBP) were used in C group. Two radiologists assessed image quality with 5-piont scale subjectively and double-blind. Independent-Sample Test was used to analyze statistical significance of image quality including signal to noise ratio(SNR) and contrast to noise ratio (CNR) between A and B group or between A and C group. At the same time, Contrast medium dose statistical significance between A and B group and mean effective Radiation dose (ED)statistical significance between A and C were analyzed by the same way. RESULTS: There were no significant difference of image quality including SNR and CNR of aortic root (AO), left main coronary artery (LM), left anterior descending artery (LAD), circumflex coronary artery (CX) and right coronary artery (RCA) Between A and B group (P = non-significant for all comparison), whereas Iodine in taken of A group decreased 14% (17 600 mg vs 20 350 mg). There were no significant difference of image quality including SNR and CNR of AO, LM, LAD, CX and RCA Between A and C group (P = non-significant for all comparison), whereas mean ED of A group decreased 50% (0.41 ± 0.05 mSv vs 0.79 ± 0.15 mSv). CONCLUSION: The double low dose application which use High-pitch spiral mode, 80 kV, SAFIRE, and Iodixanol (320 mgI/ml) can be used in those patients whose BMI <23 kg/m² and heart rates <65 bpm to reduce the burden of radiation and contrast medium significantly, without compromising the image quality.


Subject(s)
Contrast Media , Tomography, X-Ray Computed/methods , Coronary Angiography , Double-Blind Method , Heart Rate , Humans , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted
14.
J Virol Methods ; 197: 1-6, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24291739

ABSTRACT

Human papillomaviruses (HPV), particularly HPV16, are associated with most cervical cancers. Currently, although prophylactic vaccines have been developed, there is still an urgent need to develop therapeutic HPV vaccines. In this study, a novel fusion protein, HPV 16 E7-HBcAg-Hsp65 (VR111), with the goal of increasing anti-HPV16 cellular immunity was developed. VR111 was analyzed using SDS-PAGE, western-blotting, capillary isoelectric focusing (cIEF), analytical ultracentrifugation (AUC) and dynamic light scattering (DLS). Gamma interferon (IFN-γ) secretion assay was performed by enzyme-linked immunospot (ELISPOT) and ELISA to test their ability to induce cellular immune response. Significant correlation between ELISPOT and ELISA was observed (r=0.8680, p<0.0001). It was shown that VR111 could induce a significant increase in E7-specific CD8(+) T cell responses. Humoral immune response was also observed. The antibody titer levels were measured by ELISA. These results indicated that VR111 was a promising therapeutic vaccine for treatment of cervical cancer with possible therapeutic potential in clinical settings.


Subject(s)
Papillomavirus Infections/therapy , Papillomavirus Vaccines/administration & dosage , Papillomavirus Vaccines/immunology , Animals , Antibodies, Viral/blood , CD8-Positive T-Lymphocytes/immunology , Enzyme-Linked Immunosorbent Assay , Enzyme-Linked Immunospot Assay , Female , Heat-Shock Proteins/genetics , Hepatitis B Core Antigens/genetics , Interferon-gamma/metabolism , Mice , Mice, Inbred C57BL , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
15.
Nanomedicine ; 9(7): 1077-88, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23499668

ABSTRACT

Herein, we develop FePt@Fe2O3 core-shell magnetic nanoparticles as a T2 magnetic resonance (MR) imaging contrast agent as well as a drug carrier for potential cancer theranostic applications. The FePt@Fe2O3 core-shell nanoparticles are synthesized and then functionalized with polyethylene glycol (PEG). Folic acid (FA) is conjugated on the surface of FePt@Fe2O3-PEG nanoparticles for effective targeting of folate receptor (FR)-positive tumor cells. A chemotherapy drug, doxorubicin (DOX), is then loaded onto those nanoparticles via hydrophobic physical adsorption, for targeted intracellular drug delivery and selective cancer cell killing. We then use those FePt@Fe2O3-PEG nanoparticles for in vivo MR imaging, observing obvious tumor MR contrasts, which resulted from both passive tumor accumulation and active tumor targeting of nanoparticles. Moreover, both in vitro and in vivo studies uncover no obvious toxicity for FePt@Fe2O3-PEG nanoparticles. Therefore, our PEGylated FePt@Fe2O3 core-shell nanoparticles could serve as a promising multifunctional theranostic nano-platform in imaging guided cancer therapy. FROM THE CLINICAL EDITOR: In this study of PEGylated FePt@Fe2O3 core-shell magnetic nanoparticles, both therapeutic and diagnostic applications are demonstrated. Folic acid surface-conjugation resulted in uptake by folate receptor positive cancer cells, the iron oxide particles enabled MRI imaging using T2* weighted sequences, and the absorbed doxorubicin provided treatment effects in this model. Similar multi-modality approaches will hopefully find their way to clinical applications in the near future.


Subject(s)
Magnetite Nanoparticles/toxicity , Neoplasms/diagnosis , Neoplasms/drug therapy , Polyethylene Glycols/toxicity , Toxicity Tests , Animals , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Delivery Systems , Humans , Magnetic Resonance Imaging , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Mice , Mice, Inbred BALB C , Neoplasms/pathology , Polyethylene Glycols/chemistry
16.
Biomaterials ; 32(35): 9364-73, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21880364

ABSTRACT

Multimodal imaging and imaging-guided therapies have become a new trend in the current development of cancer theranostics. In this work, we encapsulate hydrophobic upconversion nanoparticles (UCNPs) together with iron oxide nanoparticles (IONPs) by using an amphiphilic block copolymer, poly (styrene-block-allyl alcohol) (PS(16)-b-PAA(10)), via a microemulsion method, obtaining an UC-IO@Polymer multi-functional nanocomposite system. Fluorescent dye and anti-cancer drug molecules can be further loaded inside the UC-IO@Polymer nanocomposite for additional functionalities. Utilizing the Squaraine (SQ) dye loaded nanocomposite (UC-IO@Polymer-SQ), triple-modal upconversion luminescence (UCL)/down-conversion fluorescence (FL)/magnetic resonance (MR) imaging is demonstrated in vitro and in vivo, and also applied for in vivo cancer cell tracking in mice. On the other hand, a chemotherapy drug, doxorubicin, is also loaded into the nanocomposite, forming an UC-IO@Polymer-DOX complex, which enables novel imaging-guided and magnetic targeted drug delivery. Our work provides a method to fabricate a nanocomposite system with highly integrated functionalities for multimodal biomedical imaging and cancer therapy.


Subject(s)
Drug Delivery Systems/methods , Ferric Compounds/chemistry , Imaging, Three-Dimensional/methods , Magnetic Resonance Spectroscopy/methods , Nanocomposites/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Animals , Cell Line, Tumor , Doxorubicin/pharmacology , Fluorescence , Humans , Injections, Intravenous , Mice , Nanocomposites/administration & dosage , Nanocomposites/ultrastructure , Nanoparticles/ultrastructure , Polymers/administration & dosage
17.
Chem Commun (Camb) ; 47(22): 6320-2, 2011 Jun 14.
Article in English | MEDLINE | ID: mdl-21541416

ABSTRACT

Magnetic Fe(2)O(3) nanorods with low cell toxicity were successfully synthesized via a wet-chemical method. In vivo studies with a rabbit model show that the nanorods exhibit excellent T(2) signal enhancement. This work demonstrates that magnetic nanorods may provide a new type of MR enhancement agent for use in biomedical applications.


Subject(s)
Contrast Media/chemistry , Ferric Compounds/chemistry , Nanotubes/chemistry , Platinum/chemistry , Animals , Cell Line , Contrast Media/pharmacokinetics , Liver/metabolism , Magnetic Resonance Imaging , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Mice , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...