Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Discov Oncol ; 14(1): 84, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37256374

ABSTRACT

PURPOSE: The present study aimed to explore the anticancer activity of hirsuteine (HST), an indole alkaloid from the traditional Chinese herbal medicine Uncaria rhynchophylla, against colorectal cancer (CRC) and the underlining mechanism. METHODS: MTT, colony formation, flow cytometry and MDC staining were conducted to confirm the antiproliferative effect of HST on human CRC cells harboring different p53 status. Protein expressions were evaluated by the Western blot analysis. p53 protein half-life and the interaction between p53 and MDM2 were investigated using cycloheximide (CHX)-chase assay and Co-immunoprecipitation (Co-IP), respectively. Transcriptional activity of p53 was examined by qRT-PCR and Chromatin immunoprecipitation (ChIP). Xenograft tumor in nude mice was created to evaluate in vivo anticancer effect of HST against CRC. RESULTS: HST inhibited cell growth, arrested cell cycle and induced autophagy, showing efficient anticancer effects on CRC cells independent of p53 status. In HCT-8 cells, HST prolonged wtp53 half-life, and upregulated mRNA level of p21, suggesting that HST activated the p53 pathway through enhancement of wtp53 stability and transcriptional activity. Meanwhile in SW620 cells, HST induced MDM2-mediated proteasomal degradation of mutp53R273H, increased the DNA-binding ability of mutp53R273H at the p21 promoter, and upregulated mRNA levels of p21 and MDM2, demonstrating the depletion of mutp53R273H and restoration of its wild-type-like properties by HST. p53 knockdown by siRNA significantly impaired the growth inhibition of HST on HCT-8 and SW620 cells. Moreover, HST showed anticancer effects in xenograft tumors, accompanied with an opposite regulation of wtp53 and mutp53 R273H in mechanism. CONCLUSION: This study revealed the anticancer efficacy of HST against CRC via opposite modulation of wtp53 and mutp53 R273H, indicating the potential of HST to be a CRC drug candidate targeting p53 signaling.

2.
Biol Trace Elem Res ; 200(11): 4865-4879, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34973128

ABSTRACT

Selenium (Se) is an essential micronutrient with many beneficial effects for humans and other living organisms. Numerous microorganisms in culture systems enrich and convert inorganic selenium to organic selenium. In this study, Epichloë sp. from Festuca sinensis was exposed to increasing Na2SeO3 concentrations (0, 0.1, 0.2, 0.3, and 0.4 mmol/L) in Petri dishes with potato dextrose agar (PDA) for 8 weeks. Epichloë sp. mycelia were immediately collected after mycelial diameters were measured at 4, 5, 6, 7, and 8 weeks of cultivation, respectively. Gas chromatography-mass spectrometer (GC-MS) analysis was performed on different groups of Epichloë sp. mycelia. Different changes were observed as Epichloë sp. was exposed to different selenite conditions and cultivation time. The colony diameter of Epichloë sp. decreased in response to increased selenite concentrations, whereas the inhibitory effects diminished over time. Seventy-two of the 203 identified metabolites did not differ significantly across selenite treatments within the same time point, while 82 compounds did not differ significantly between multiple time points of the same Se concentration. However, the relative levels of 122 metabolites increased the most under selenite conditions. Specifically, between the 4th and 8th weeks, there were increases in 2-keto-isovaleric acid, uridine, and maltose in selenite treatments compared to controls. Selenium increased glutathione levels and exhibited antioxidant properties in weeks 4, 5, and 7. Additionally, we observed that different doses of selenite could promote the production of carbohydrates such as isomaltose, cellobiose, and sucrose; fatty acids such as palmitoleic acid, palmitic acid, and stearic acid; and amino acids such as lysine and tyrosine in Epichloë sp. mycelia. Therefore, Epichloë sp. exposed to selenite stress may benefit from increased levels of some metabolite compounds.


Subject(s)
Epichloe , Festuca , Selenium , Agar , Antioxidants/pharmacology , Cellobiose , Epichloe/chemistry , Epichloe/metabolism , Fatty Acids , Festuca/metabolism , Glucose , Glutathione , Humans , Isomaltose , Lysine , Maltose , Micronutrients , Palmitic Acids , Selenious Acid , Selenium/metabolism , Selenium/pharmacology , Sodium Selenite/metabolism , Sodium Selenite/pharmacology , Stearic Acids , Sucrose , Tyrosine , Uridine
3.
J Ethnobiol Ethnomed ; 13(1): 24, 2017 May 04.
Article in English | MEDLINE | ID: mdl-28472968

ABSTRACT

BACKGROUND: Livestock rearing is one of the oldest and most important types of smallholder farming worldwide. The sustainability of livestock production depends on the efficient utilization of locally available resources. Some traditional methods of raising livestock may offer valuable lessons in this regard. This study documented and evaluated local knowledge of wild forage plants in the Dulongjiang area in Southwest China in the context of rearing mithun (Bos frontalis) in order to provide a sound evidence base for tree fodder selection and the establishment of integrated tree-crop-livestock systems. METHODS: The snowball technique was used to identify key informants with specific knowledge about the topic. Free listing and semi-structured interviews were conducted with 58 households. Participatory investigation and transit walks were used to investigate potential fodder species. Ethnobotanical information was collected, documented and organized. RESULTS: Overall, 142 wild forage plants from 58 families and 117 genera were identified. Species of the Poaceae, Rosaceae and Urticaceae families were most abundant, with 16, 14 and 11 species respectively identified as fodder plants. Our results indicated that tree/shrub forage plays a major role in the diet of mithun, unlike that of other ruminants. Mithun prefers to browse and move around the forest in search of food, particularly rough and even barbed leaves. Tree species like Debregeasia orientalis, Saurauia polyneura and Rubus species were identified as being important fodder sources. Farmers in this area have traditionally relied on common property resources such as community-managed forests and grasslands to feed their livestock. Farmers have strong incentive to raise mithuns rather than other livestock species due to Dulong people's cultural preferences. CONCLUSIONS: The wide variety of plants cited by the informants demonstrate the importance of traditional knowledge in gathering information about forage resources. This diversity also offers the prospect of identifying promising species which could be used as fodder plants. Identifying such species and tree fodder species in particular could help smallholder farmers to integrate trees, livestock and crops as part of a sustainable farming system.


Subject(s)
Animal Feed , Animal Husbandry/methods , Cattle , Adult , Aged , Animals , China , Crop Production/methods , Ethnicity , Ethnobotany , Female , Humans , Interviews as Topic , Male , Middle Aged , Plants, Edible , Young Adult
4.
PLoS One ; 12(1): e0170418, 2017.
Article in English | MEDLINE | ID: mdl-28103281

ABSTRACT

The use of native species in forest restoration has been increasingly recognized as an effective means of restoring ecosystem functions and biodiversity to degraded areas across the world. However, successful selection of species adapted to local conditions requires specific knowledge which is often lacking, especially in developing countries. In order to scale up forest restoration, experimental data on the responses of native species to propagation and restoration treatments across a range of local conditions are required. In this study, the restoration potential of 34 native tree species was evaluated based on nursery research and field planting experiments at a highly degraded site in a subtropical area of southwest China. We examined species performance in terms of germination rates as well as survival rates and growth over 2 years after planting. Of the 34 species examined, 25 had a germination percentage greater than 50%. Survivorship ranged from 0 to 97% across species and was greater than 50% for 20 species. Mean monthly growth increments varied between species. Pioneer species performed well, and 14 mid- and late-successional species performed reasonably well to very well in this study. However, the remaining 16 mid- and late-successional species performed poorly. These results indicate that carefully selected mid- and late-successional species can be effectively incorporated into mixed species plantings. This data can be used to inform restoration planning, helping to identify suitable species and so enhance the biodiversity and resilience of restored forests.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Forests , Trees/growth & development , Biodiversity , China , Germination , Species Specificity , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...