Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Acta Biomater ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897335

ABSTRACT

Recent advances in bone tissue engineering have shown promise for bone repair post osteosarcoma excision. However, conflicting research on mesenchymal stem cells (MSCs) has raised concerns about their potential to either promote or inhibit tumor cell proliferation. It is necessary to thoroughly understand the interactions between MSCs and tumor cells. Most previous studies only focused on the interactions between cells within the tumor tissues. It has been challenging to develop an in vitro model of osteosarcoma excision sites replicating the complexity of the bone microenvironment and cell distribution. In this work, we designed and fabricated modular bioceramic scaffolds to assemble into a co-culture model. Because of the bone-like composition and mechanical property, tricalcium phosphate bioceramic could mimic the bone microenvironment and recapitulate the cell-extracellular matrix interaction. Moreover, the properties for easy assembly enabled the modular units to mimic the spatial distribution of cells in the osteosarcoma excision site. Under this co-culture model, MSCs showed a noticeable tumor-stimulating effect with a potential risk of tumor recurrence. In addition, tumor cells also could inhibit the osteogenic ability of MSCs. To undermine the stimulating effects of MSCs on tumor cells, we present the methods of pre-differentiated MSCs, which had lower expression of IL-8 and higher expression of osteogenic proteins. Both in vitro and in vivo studies confirm that pre-differentiated MSCs could maintain high osteogenic capacity without promoting tumor growth, offering a promising approach for MSCs' application in bone regeneration. Overall, 3D modular scaffolds provide a valuable tool for constructing hard tissue in vitro models. STATEMENT OF SIGNIFICANCE: Bone tissue engineering using mesenchymal stem cells (MSCs) and biomaterials has shown promise for bone repair post osteosarcoma excision. However, conflicting researches on MSCs have raised concerns about their potential to either promote or inhibit tumor cell proliferation. It remains challenges to develop in vitro models to investigate cell interactions, especially of osteosarcoma with high hardness and special composition of bone tissue. In this work, modular bioceramic scaffolds were fabricated and assembled to co-culture models. The interactions between MSCs and MG-63 were manifested as tumor-stimulating and osteogenesis-inhibiting, which means potential risk of tumor recurrence. To undermine the stimulating effect, pre-differentiation method was proposed to maintain high osteogenic capacity without tumor-stimulating, offering a promising approach for MSCs' application in bone regeneration.

2.
Hematology ; 29(1): 2301633, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38186217

ABSTRACT

Thrombosis, a leading contributor to global health burden, is a complex process involving the interplay of various cell types, including vascular endothelial cells, platelets, and red blood cells. Oxidative stress, characterized by an overproduction of reactive oxygen species (ROS), can significantly impair the function of these cells, thus instigating a cascade of events leading to thrombus formation. In this review, we comprehensively explore the role of oxidative stress within these cells, and its mechanistic contribution to thrombogenesis, and the application of oxidative therapy in inhibiting thrombosis. By dissecting the intricacies of oxidative stress and its impact on thrombosis, we underscore its potential as a viable therapeutic target. Therefore, further research in this direction is warranted to enhance our understanding and management of thrombotic disorders.


Subject(s)
Endothelial Cells , Thrombosis , Humans , Oxidative Stress , Reactive Oxygen Species , Blood Platelets , Thrombosis/etiology
3.
Environ Sci Pollut Res Int ; 23(16): 16096-103, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27146548

ABSTRACT

A modified polar organic chemical integrative sampler (POCIS) could provide a convenient way of monitoring perfluorinated chemicals (PFCs) in water. In the present study, the modified POCIS was calibrated to monitor PFCs. The effects of water temperature, pH, and dissolved organic matter (DOM) on the sampling rate (R s) of PFCs were evaluated with a static renewal system. During laboratory validation over a 14-day period, the uptake kinetics of PFCs was linear with the POCIS. DOM and water temperature slightly influenced POCIS uptake rates, which is in consistent with the theory for uptake into POCIS. Therefore, within a narrow span of DOM and water temperatures, it was unnecessary to adjust the R s value for POCIS. Laboratory experiments were conducted with water over pH ranges of 3, 7, and 9. The R s values declined significantly with pH increase for PFCs. Although pH affected the uptake of PFCs, the effect was less than twofold. Application of the R s value to analyze PFCs with POCIS deployed in the field provided similar concentrations obtained from grab samples.


Subject(s)
Environmental Monitoring/instrumentation , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Calibration , Hydrogen-Ion Concentration , Kinetics , Temperature , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...