Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Anim Biotechnol ; 35(1): 2351975, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38742598

ABSTRACT

The development of ovarian follicles in poultry is a key factor affecting the performance of egg production. Ovarian follicle development is regulated via the Wnt/ß-catenin signaling pathway, and ß-catenin, encoded by CTNNB1, is a core component of this pathway. In this study, using ovary GCs from laying hens, we investigated the regulatory role of CTNNB1 in steroid synthesis. We found that CTNNB1 significantly regulates the expression of StAR and CYP11A1 (key genes related to progesterone synthesis) and the secretion of progesterone (P4). Furthermore, simultaneous overexpression of CTNNB1 and SF1 resulted in significantly higher levels of CYP11A1 and secretion of P4 than in cells overexpressing CTNNB1 or SF1 alone. We also found that in GCs overexpressing SF1, levels of CYP11A1 and secreted P4 were significantly greater than in controls. Silencing of CYP11A1 resulted in the inhibition of P4 secretion while overexpression of SF1 in CYP11A1-silenced cells restored P4 secretion to normal levels. Together, these results indicate that synergistic cooperation between the ß-catenin and SF1 regulates progesterone synthesis in laying hen ovarian hierarchical granulosa cells to promote CYP11A1 expression.


Subject(s)
Chickens , Cholesterol Side-Chain Cleavage Enzyme , Granulosa Cells , Progesterone , beta Catenin , Animals , Female , Progesterone/biosynthesis , Progesterone/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Granulosa Cells/metabolism , Chickens/genetics , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism , Gene Expression Regulation/physiology
2.
Eur J Radiol ; 175: 111477, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38669755

ABSTRACT

PURPOSE: Advanced MR fiber tracking imaging reflects fiber bundle invasion by glioblastoma, particularly of the corticospinal tract (CST), which is more susceptible as the largest downstream fiber tracts. We aimed to investigate whether CST features can predict the overall survival of glioblastoma. METHODS: In this prospective secondary analysis, 40 participants (mean age, 58 years; 16 male) pathologically diagnosed with glioblastoma were enrolled. Diffusion spectrum MRI was used for CST reconstruction. Fifty morphological and diffusion indicators (DTI, DKI, NODDI, MAP and Q-space) were used to characterize the CST. Optimal parameters capturing fiber bundle damage were obtained through various grouping methods. Eventually, the correlation with overall survival was determined by the hazard ratios (HRs) from various Cox proportional hazard model combinations. RESULTS: Only intracellular volume fraction (ICVF) and non-Gaussianity (NG) values on the affected tumor level were significant in all four groups or stratified comparisons (all P < .05). During the median follow-up 698 days, only the ICVF on the affected tumor level was independently associated with overall survival, even after adjusting for all classic prognostic factors (HR [95 % CI]: 0.611 [0.403, 0.927], P = .021). Moreover, stratification by the ICVF on the affected tumor level successfully predicted risk (P < .01) and improved the C-index of the multivariate model (from 0.695 to 0.736). CONCLUSIONS: This study demonstrates a relationship between NODDI-derived CST features, ICVF on the affected tumor level, and overall survival in glioblastoma. Independent of classical prognostic factors for glioblastoma, a lower ICVF on the affected tumor level might predict a lower overall survival.


Subject(s)
Brain Neoplasms , Glioblastoma , Pyramidal Tracts , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/mortality , Glioblastoma/pathology , Male , Middle Aged , Female , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Pyramidal Tracts/diagnostic imaging , Pyramidal Tracts/pathology , Prospective Studies , Diffusion Tensor Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Aged , Survival Rate , Adult , Prognosis
3.
BMC Oral Health ; 24(1): 365, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515110

ABSTRACT

BACKGROUND: Treating white spot lesions (WSLs) with resin infiltration alone may not be sufficient, raising questions about its compatibility with other treatments amid controversial or incomplete data. Therefore, this study aimed to assess the aesthetic feasibility of resin infiltration combined with bleaching, as well as its potential mechanical effect on ceramic bonding to WSLs. METHODS: One hundred and fifty flat enamel surfaces of bovine incisors were prepared. Ninety specimens were deminerailized and randomly assigned to three groups(n = 30): post-bleaching resin infiltration (Bl-R), pre-bleaching resin infiltration (R-Bl), and only resin infiltration (R). Color, surface roughness and microhardness were assessed in immediate, thermocycling and pigmentation tests. The remaining sixty samples were randomly assigned to three groups (n = 20): control (Ctrl), bonding (Bo), pre-bonding resin infiltration (R-Bo). Shear bonding strength, failure mode, micro-leakage depth and interface morphology were evaluated after ceramic bonding. The Tukey test and analysis of variance (ANOVA) were used for statistical analysis. RESULTS: For the effect of resin infiltration and bleaching on WSLs, the R-Bl group showed the worst chromic masking ability, with the highest |ΔL|, |Δa|, |Δb|, and ΔE values after treatment. Compared with those in the Bl-R group, the R-Bl and R groups showed significant time-dependent staining, which is possibly attributed to their surface roughness. For the effect of resin infiltration on the adhesive properties of WSLs, resin infiltration reduced the staining penetration depth of WSLs from 2393.54 ± 1118.86 µm to 188.46 ± 89.96 µm (P < 0.05) while reducing WSLs porosity in SEM observation. CONCLUSIONS: Post-bleaching resin infiltration proved to be advantageous in the aesthetic treatment of WSLs. Resin infiltration did not compromise bonding strength but it did reduce microleakage and enhance marginal sealing. Overall, resin infiltration can effectively enhance the chromatic results of treated WSLs and prevent long-term bonding failure between ceramics and enamel. Based on these findings, the use of post-bleaching resin infiltration is recommended, and resin infiltration before ceramic bonding is deemed viable in clinical practice.


Subject(s)
Dental Caries , Resins, Synthetic , Humans , Animals , Cattle , Resins, Synthetic/therapeutic use , Dental Caries/therapy , Esthetics, Dental , Dental Enamel , Ceramics
4.
CNS Neurosci Ther ; 30(3): e14682, 2024 03.
Article in English | MEDLINE | ID: mdl-38499993

ABSTRACT

BACKGROUND: Accumulating evidence supports the involvement of adaptive immunity in the development of radiation-induced brain injury (RIBI). Our previous work has emphasized the cytotoxic function of CD8+ T cells in RIBI. In this study, we aimed to investigate the presence and potential roles of cytotoxic CD4+ T cells (CD4+ CTLs) in RIBI to gain a more comprehensive understanding of adaptive immunity in this context. MAIN TEXT: Utilizing single-cell RNA sequencing (scRNA-seq), we analyzed 3934 CD4+ T cells from the brain lesions of four RIBI patients and identified six subclusters within this population. A notable subset, the cytotoxic CD4+ T cells (CD4+ CTLs), was marked with high expression of cytotoxicity-related genes (NKG7, GZMH, GNLY, FGFBP2, and GZMB) and several chemokine and chemokine receptors (CCL5, CX3CR1, and CCL4L2). Through in-depth pseudotime analysis, which simulates the development of CD4+ T cells, we observed that the CD4+ CTLs exhibited signatures of terminal differentiation. Their functions were enriched in protein serine/threonine kinase activity, GTPase regulator activity, phosphoprotein phosphatase activity, and cysteine-type endopeptidase activity involved in the apoptotic signaling pathway. Correspondingly, mice subjected to gamma knife irradiation on the brain showed a time-dependent infiltration of CD4+ T cells, an increase of MHCII+ cells, and the existence of CD4+ CTLs in lesions, along with an elevation of apoptotic-related proteins. Finally, and most crucially, single-cell T-cell receptor sequencing (scTCR-seq) analysis at the patient level determined a large clonal expansion of CD4+ CTLs in lesion tissues of RIBI. Transcriptional factor-encoding genes TBX21, RORB, and EOMES showed positive correlations with the cytotoxic functions of CD4+ T cells, suggesting their potential to distinguish RIBI-related CD4+ CTLs from other subsets. CONCLUSION: The present study enriches the understanding of the transcriptional landscape of adaptive immune cells in RIBI patients. It provides the first description of a clonally expanded CD4+ CTL subset in RIBI lesions, which may illuminate new mechanisms in the development of RIBI and offer potential biomarkers or therapeutic targets for the disease.


Subject(s)
Antineoplastic Agents , Brain Injuries , Humans , Mice , Animals , CD8-Positive T-Lymphocytes , CD4-Positive T-Lymphocytes , T-Lymphocytes, Cytotoxic , Brain , Brain Injuries/metabolism
5.
Alzheimers Res Ther ; 16(1): 56, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475929

ABSTRACT

BACKGROUND: Although abnormal accumulation of amyloid beta (Aß) protein is thought to be the main cause of Alzheimer's disease (AD), emerging evidence suggests a pivotal vascular contribution to AD. Aberrant amyloid ß induces neurovascular dysfunction, leading to changes in the morphology and function of the microvasculature. However, little is known about the underlying mechanisms between Aß deposition and vascular injuries. Recent studies have revealed that pericytes play a substantial role in the vasculopathy of AD. Additional research is imperative to attain a more comprehensive understanding. METHODS: Two-photon microscopy and laser speckle imaging were used to examine cerebrovascular dysfunction. Aß oligomer stereotactic injection model was established to explain the relationship between Aß and vasculopathy. Immunofluorescence staining, western blot, and real-time PCR were applied to detect the morphological and molecular alternations of pericytes. Primary cultured pericytes and bEnd.3 cells were employed to explore the underlying mechanisms. RESULTS: Vasculopathy including BBB damage, hypoperfusion, and low vessel density were found in the cortex of 8 to 10-month-old 5xFAD mice. A similar phenomenon accompanied by pericyte degeneration appeared in an Aß-injected model, suggesting a direct relationship between Aß and vascular dysfunction. Pericytes showed impaired features including low PDGFRß expression and increased pro-inflammatory chemokines secretion under the administration of Aß in vitro, of which supernatant cultured with bEND.3 cells led to significant endothelial dysfunction characterized by TJ protein deficiency. CONCLUSIONS: Our results provide new insights into the pathogenic mechanism underlying Aß-induced vasculopathy. Targeting pericyte therapies are promising to ameliorate vascular dysfunction in AD.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Cerebrovascular Disorders , Mice , Animals , Amyloid beta-Peptides/metabolism , Pericytes/pathology , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Alzheimer Disease/pathology , Cerebrovascular Disorders/complications
6.
Poult Sci ; 103(3): 103377, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301496

ABSTRACT

Ovarian follicle development depends on the proliferation and differentiation of granulosa cells and is a complex biological process. The Wnt/ß-catenin signaling pathway can regulate ovarian follicle development, and ß-catenin, encoded by catenin beta 1 (CTNNB1), is the core component of this pathway. Although several studies of the mechanisms by which the Wnt/ß-catenin pathway regulates cell proliferation in humans and mammals have reported, it remains unclear how ß-catenin functions in poultry. To investigate the function of ß-catenin in laying hens' follicle development, we evaluated the effect of CTNNB1 on cell cycle, proliferation, and apoptosis in ovarian granulosa cells (GCs) isolated from laying hens. We demonstrated that CTNNB1 significantly affected the expression of cyclin D1 (CCND1) and v-myc avian myelocytomatosis viral oncogene homolog (c-Myc) (P < 0.01 and P < 0.05), key genes related to cell cycle and proliferation, to promote cell cycle progression from G1 to S phase, and thus accelerate granulosa cell proliferation. CTNNB1 did not however affect apoptosis or the expression of related genes baculoviral IAP repeat containing 5 (BIRC5) and BCL2 apoptosis regulator (Bcl-2). Overexpression of transcription factor 7-like 2 (TCF4) resulted in increased expression of CCND1, accelerated cell cycle progression, and granulosa cell proliferation. Direct physical interaction between ß-catenin and TCF4 was demonstrated by immunofluorescence and coimmunoprecipitation. The proliferation of granulosa cells was inhibited by silencing CCND1; overexpression of TCF4 in CCND1-silenced cells restored their proliferation rate to normal levels. These results indicate that the interaction of TCF4 and ß-catenin promotes CCND1 expression which in turn accelerates the cell cycle process of laying hen hierarchical follicular granulosa cells.


Subject(s)
Chickens , beta Catenin , Humans , Animals , Female , beta Catenin/genetics , Chickens/genetics , Apoptosis , Cell Proliferation , Granulosa Cells , Mammals , Transcription Factor 4/genetics
7.
Cancer Discov ; 14(3): 468-491, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38189443

ABSTRACT

Activating innate immunity in cancer cells through cytoplasmic nucleic acid sensing pathways, a phenomenon known as "viral mimicry," has emerged as an effective strategy to convert immunologically "cold" tumors into "hot." Through a curated CRISPR-based screen of RNA helicases, we identified DExD/H-box helicase 9 (DHX9) as a potent repressor of double-stranded RNA (dsRNA) in small cell lung cancers (SCLC). Depletion of DHX9 induced accumulation of cytoplasmic dsRNA and triggered tumor-intrinsic innate immunity. Intriguingly, ablating DHX9 also induced aberrant accumulation of R-loops, which resulted in an increase of DNA damage-derived cytoplasmic DNA and replication stress in SCLCs. In vivo, DHX9 deletion promoted a decrease in tumor growth while inducing a more immunogenic tumor microenvironment, invigorating responsiveness to immune-checkpoint blockade. These findings suggest that DHX9 is a crucial repressor of tumor-intrinsic innate immunity and replication stress, representing a promising target for SCLC and other "cold" tumors in which genomic instability contributes to pathology. SIGNIFICANCE: One promising strategy to trigger an immune response within tumors and enhance immunotherapy efficacy is by inducing endogenous "virus-mimetic" nucleic acid accumulation. Here, we identify DHX9 as a viral-mimicry-inducing factor involved in the suppression of double-stranded RNAs and R-loops and propose DHX9 as a novel target to enhance antitumor immunity. See related commentary by Chiappinelli, p. 389. This article is featured in Selected Articles from This Issue, p. 384.


Subject(s)
Lung Neoplasms , Nucleic Acids , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/genetics , Interferons , Lung Neoplasms/genetics , Immunity, Innate , RNA, Double-Stranded , Tumor Microenvironment , Neoplasm Proteins , DEAD-box RNA Helicases/genetics
8.
Lupus ; 33(3): 255-265, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38269543

ABSTRACT

PURPOSE: To explore the relationship between brain function changes and clinical serological indicators and behavioral cognitive assessment in patients with neuropsychiatric systemic lupus erythematosus (NPSLE), and understand the pathogenesis of NPSLE from the perspective of imaging. METHODS: The resting-state functional imaging data, clinical serological, and behavioral cognitive assessment scores of 28 patients with NPSLE and 22 healthy controls (HC) were prospectively collected. The resting-state amplitude of low-frequency fluctuation (ALFF) values obtained from the analysis and processing were correlated with the serological data and behavioral cognitive assessment scores to determine the relationship between these data. RESULTS: The average age of the patients of the NPSLE group was older than that of the HC group; significant differences in education level, Auditory Verbal Learning Test Hua Shan Version (AVLT-H), and Trail Making Test scores were observed between the two groups. The NPSLE group demonstrated increased brain activity in the insula, precentral gyrus, and superior temporal gyrus, and decreased brain activity in the superior parietal gyrus. The ALFF value of the insula positively correlated with the Anti-ß2gp1 antibody and negatively correlated with the anti-nucleosome antibody and the AVL-recall (RC) score. The ALFF of the precentral gyrus negatively correlated with the AVL-immediate recall (I). The ALFF value of the superior temporal gyrus negatively correlated with the AVL-RC score. The left superior parietal gyrus positively correlated with the c-reactive protein. The right superior parietal gyrus positively correlated with the System Lupus Erythematosus Disease Activity Index and negatively correlated with the AVL-I score. CONCLUSION: Patients with NPSLE show different brain activity changes in different brain regions, and the abnormal brain regions are correlated with certain lupus antibodies, inflammatory factors, and cognitive assessment, thereby suggesting that the correlation between the three could provide novel insights into the pathogenesis of NPSLE.


Subject(s)
Cognitive Dysfunction , Lupus Erythematosus, Systemic , Lupus Vasculitis, Central Nervous System , Humans , Lupus Vasculitis, Central Nervous System/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology
9.
Anim Biosci ; 37(1): 28-38, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37641844

ABSTRACT

OBJECTIVE: Tibetan chickens, which have unique adaptations to extreme high-altitude environments, exhibit phenotypic and physiological characteristics that are distinct from those of lowland chickens. However, the mechanisms underlying hypoxic adaptation in the liver of chickens remain unknown. METHODS: RNA-sequencing (RNA-Seq) technology was used to assess the differentially expressed genes (DEGs) involved in hypoxia adaptation in highland chickens (native Tibetan chicken [HT]) and lowland chickens (Langshan chicken [LS], Beijing You chicken [BJ], Qingyuan Partridge chicken [QY], and Chahua chicken [CH]). RESULTS: A total of 352 co-DEGs were specifically screened between HT and four native lowland chicken breeds. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses indicated that these co-DEGs were widely involved in lipid metabolism processes, such as the peroxisome proliferator-activated receptors (PPAR) signaling pathway, fatty acid degradation, fatty acid metabolism and fatty acid biosynthesis. To further determine the relationship from the 352 co-DEGs, protein-protein interaction network was carried out and identified eight genes (ACSL1, CPT1A, ACOX1, PPARC1A, SCD, ACSBG2, ACACA, and FASN) as the potential regulating genes that are responsible for the altitude difference between the HT and other four lowland chicken breeds. CONCLUSION: This study provides novel insights into the molecular mechanisms regulating hypoxia adaptation via lipid metabolism in Tibetan chickens and other highland animals.

10.
Angew Chem Int Ed Engl ; 63(9): e202317852, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38141033

ABSTRACT

One-unit-cell, single-crystal, hexagonal CuInP2 S6 atomically thin sheets of≈0.81 nm in thickness was successfully synthesized for photocatalytic reduction of CO2 . Exciting ethene (C2 H4 ) as the main product was dominantly generated with the yield-based selectivity reaching ≈56.4 %, and the electron-based selectivity as high as ≈74.6 %. The tandem synergistic effect of charge-enriched Cu-In dual sites confined on the lateral edge of the CuInP2 S6 monolayer (ML) is mainly responsible for efficient conversion and high selectivity of the C2 H4 product as the basal surface site of the ML, exposing S atoms, can not derive the CO2 photoreduction due to the high energy barrier for the proton-coupled electron transfer of CO2 into *COOH. The marginal In site of the ML preeminently targets CO2 conversion to *CO under light illumination, and the *CO then migrates to the neighbor Cu sites for the subsequent C-C coupling reaction into C2 H4 with thermodynamic and kinetic feasibility. Moreover, ultrathin structure of the ML also allows to shorten the transfer distance of charge carriers from the interior onto the surface, thus inhibiting electron-hole recombination and enabling more electrons to survive and accumulate on the exposed active sites for CO2 reduction.

11.
Mol Neurobiol ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38057643

ABSTRACT

Radiotherapy for head and neck tumors can lead to a severe complication known as radiation-induced brain injury (RIBI). However, the underlying mechanism of RIBI development remains unclear, and limited prevention and treatment options are available. Neuroactive steroids have shown potential in treating neurological disorders. 5α-Androst-3ß, 5, 6ß-triol (TRIOL), a synthetic neuroprotective steroid, holds promise as a treatment candidate for RIBI patients. However, the neuroprotective effects and underlying mechanism of TRIOL on RIBI treatment are yet to be elucidated. In the present study, our findings demonstrate TRIOL's potential as a neuroprotective agent against RIBI. In gamma knife irradiation mouse model, TRIOL treatment significantly reduced brain necrosis volume, microglial activation, and neuronal loss. RNA-sequencing, immunofluorescence, real-time quantitative polymerase chain reaction, siRNA transfection, and western blotting techniques revealed that TRIOL effectively decreased microglial activation, proinflammatory cytokine release, neuron loss, and guanylate-binding protein 5 (GBP5) expression, along with its downstream signaling pathways NF-κB and NLRP3 activation in vitro. In summary, TRIOL effectively alleviate RIBI by inhibiting the GBP5/NF-κB/NLRP3 signal axis, reducing microglia activation and pro-inflammation cytokines release, rescuing neuron loss. This study highlights the potential of TRIOL as a novel and promising therapy drug for RIBI treatment.

12.
Metab Brain Dis ; 38(8): 2817-2829, 2023 12.
Article in English | MEDLINE | ID: mdl-37776380

ABSTRACT

End-stage kidney disease and mild cognitive impairment (ESKD-MCI) affect the quality of life and long-term treatment outcomes of patients affected by these diseases. Clarifying the morphological changes from brain injuries in ESKD-MCI and their relationship with clinical features is helpful for the early identification and intervention of MCI before it progresses to irreversible dementia. This study gathered data from 23 patients with ESKD-MCI, 24 patients with ESKD and non-cognitive impairment (NCI), and 27 health controls (HCs). Structural magnetic resonance studies, cognitive assessments, and general clinical data were collected from all participants. Voxel-based morphometry analysis was performed to compare grey matter (GM) volume differences between the groups. The patients' GM maps and clinical features were subjected to univariate regression to check for possible correlations. Patients with ESKD-MCI displayed significantly more impairments in multiple cognitive domains, including global cognition, visuospatial and executive function, and memory, compared to patients with ESKD-NCI. Using a more liberal threshold (P < 0.001, uncorrected), we found that compared to patients with ESKD-NCI, patients with ESKD-MCI exhibited clusters of regions with lower GM volumes, including the right hippocampus (HIP), parahippocampal gyrus (PHG), Rolandic operculum, and supramarginal gyrus. The volumes of the right HIP and PHG were negatively correlated with serum calcium levels. ESKD-MCI was associated with a subtle volume reduction of GM in several brain areas known to be involved in memory, language, and auditory information processing. We speculate that these slight morphometric impairments may be associated with disturbed calcium metabolism.


Subject(s)
Cognitive Dysfunction , Kidney Failure, Chronic , Humans , Gray Matter/diagnostic imaging , Gray Matter/pathology , Calcium , Quality of Life , Cognitive Dysfunction/psychology , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging , Kidney Failure, Chronic/diagnostic imaging
13.
Genes (Basel) ; 14(9)2023 08 24.
Article in English | MEDLINE | ID: mdl-37761812

ABSTRACT

BACKGROUND: The Tibetan chicken has adapted well to high altitudes genetically after its long-term habitation in the plateau. In this study, we analyzed the selection signal of Tibetan black chickens (TBCs) and discovered genes associated with the characteristics of germplasm. METHODS: Whole-genome sequencing (WGS) was used to identify the single-nucleotide polymorphism (SNP) markers and genetic structures in the genome of Tibetan black chickens. Further, we performed a comparative population genomics analysis between the genomic data obtained in this present study and the genomic data for five wild red jungle fowls (RJFs) accessed from the NCBI database (GenBank accession number PRJNA241474). Thereafter, the Fst and Pi selections were used to identify genes under positive selection in the Tibetan black chicken genome. RESULTS: A total of 9,490,690 SNPs were identified in the Tibetan black chickens. In addition, the results from the gene ontology (GO) analysis showed that 732 genes of TBCs were enriched in a total of 210 GO terms with specific molecular functions such as regulation of cellular catabolic process, the MAPK signaling pathway, regulation of ion transport, growth, morphogenesis and lung alveolus development which may provide a better mechanism to facilitate oxygen transport and utilization in TBCs. Moreover, the results from the KEGG analysis showed that 732 genes of the TBCs were significantly enriched in the calcium signaling pathway, circadian entrainment (ADCY1, GNG7 and PER3), oxytocin signaling pathway and pathways of multiple neurodegeneration diseases. In addition, the CD86 antigen (CD86) was identified as a gene associated with the immune response in chickens. It was also revealed that genes such as TRIT1, HPCAL4, NT5C1A and HEYL were discovered under selection in Tibetan black chickens on chromosome 23. These genes may be related to the local adaptive characteristics of Tibetan black chickens, for instance, NT5C1A and HEYL may be involved in the high-altitude adaption of oxygen delivery in Tibetan black chickens. CONCLUSIONS: In summary, we found that selection mainly affects the disease resistance and cold acclimatization of Tibetan black chickens. Hence, these results may provide important genetic information for the evolution and breeding of Tibetan black chickens.


Subject(s)
Chickens , Genomics , Animals , Chickens/genetics , Tibet , Calcium Signaling , Oxygen
14.
J Adv Nurs ; 79(10): 3707-3726, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37439492

ABSTRACT

AIMS AND OBJECTIVES: To describe dyadic psycho-social intervention measures and to evaluate their influence on stroke survivors and caregiver's functional independence, quality of life, depression, anxiety, self-efficacy and coping ability. BACKGROUND: Because of the importance of dyadic intervention and the seriousness of the psycho-social problems of stroke survivors and caregivers, understanding the influence of dyadic psycho-social interventions is vital. DESIGN: A systematic review and meta-analysis based on PRISMA guidelines. DATA SOURCES: Nine databases were systematically searched for randomized controlled trials submitted from 1910 to 4 July 2022. METHODS: The included papers were evaluated for quality, and quantitative data were standardly extracted and analysed by meta-analysis, followed by synthesis. The meta-analysis was carried out using Review Manager 5.4 software. RESULTS: Fifteen randomized controlled trials were included (n = 2190 for patients, and n = 1933 for caregivers). Study results showed that dyadic psycho-social interventions significantly alleviated the depressive symptoms of patients, obviously improved the ability to function independently of patients and more quickly alleviated the care burden of caregivers. CONCLUSIONS: This study provided moderate support for the benefits of dyadic psycho-social intervention in improving survivor and caregiver's functional independence, quality of life, depression, anxiety, self-efficacy and care burden. Nevertheless, due to limitations of the study, it was deemed necessary that this topic is studied further. RELEVANCE TO CLINICAL PRACTICE: This review suggests that dyadic psycho-social interventions should be considered as effective strategies for decreasing psycho-social problems of stroke survivors and caregivers, and provides evidence for the formulation of targeted intervention programs. The personalized implementation of such interventions should be the focus of clinical practice. NO PATIENT OR PUBLIC CONTRIBUTION: There was no patient or public contribution.


Subject(s)
Quality of Life , Stroke , Humans , Caregivers , Randomized Controlled Trials as Topic , Stroke/therapy , Survivors , Social Work
15.
Food Chem ; 422: 136184, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37148850

ABSTRACT

The effects of Saccharomyces cerevisiae and Torulaspora delbrueckii on phenolic composition and sensory quality were characterized in the production of alcoholic beverages from selected pear cultivars with diverse biochemical characteristics. The fermentation process generally affected the phenolic composition by increasing the contents of hydroxycinnamic acids and flavan-3-ols and reducing the levels of hydroxybenzoic acids, procyanidins, and flavonols. Although the phenolic compositions and sensory properties of pear beverages depended primarily on pear cultivar selection, the applied yeast strains also played important roles in beverage quality. Fermentation with T. delbrueckii resulted in higher caffeoylquinic acid and quercetin-3-O-glucoside contents, higher rated intensities of 'cooked pear' and 'floral' odors and a sweeter taste than fermentation with S. cerevisiae. Moreover, higher concentrations of hydroxybenzoic acids, hydroxycinnamic acids, and flavonols correlated closely with astringency perception. Applying T. delbrueckii strains and breeding novel pear cultivars are important approaches to produce fermented beverages of high quality.


Subject(s)
Pyrus , Torulaspora , Wine , Saccharomyces cerevisiae , Wine/analysis , Plant Breeding , Phenols , Fermentation , Hydroxybenzoates
16.
Small ; 19(18): e2207496, 2023 May.
Article in English | MEDLINE | ID: mdl-36775919

ABSTRACT

It is extremely crucial to design and match high-quality cathode and anode for achieving high-performance asymmetric supercapacitors (ASCs). Herein, Co3 (PO4 )2 @NiCo-LDH/Ni foam (CP@NCOH/NF) cathode with hierarchical morphology and graphene hydrogel/Fe-Ni phosphide/Ni foam (GH/FNP/NF) anode with the robust and porous structure are elaborately designed and prepared, respectively. Owing to their unique and profitable structures, both CP@NCOH/NF and GH/FNP/NF electrodes yield the superior capacity (10760 and 2236 mC cm-2 at 2 mA cm-2 , respectively), good rate capability (63% retention at 200 mA cm-2 and 52% retention at 50 mA cm-2 , respectively), and excellent cycling stability (72% and 74% retention after 10 000 cycles, respectively). Benefiting from their matchable electrochemical performances, the configured solid-state CP@NCOH/NF//GH/FNP/NF ASC outputs both competitive energy density (80.2 Wh kg-1 /4.1 mWh cm-3 ) and power density (14563 W kg-1 /750 mW cm-3 ), companied by remarkable cyclability (71% retention after 10 000 cycles), manifesting its great promise for large-scale integrated energy-storage system.

17.
Int Immunopharmacol ; 116: 109796, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36731157

ABSTRACT

Macrophages are highly implicated in the progression of periodontitis, while circadian rhythm disruption (CRD) promotes the inflammatory response of macrophages in many diseases. However, the effects of CRD on periodontitis and the role of macrophages in this process remain unclear. Histone lysinedemethylase6a (Kdm6a), a histone demethylase, has recently been identified as a key regulator of macrophage-induced inflammation. Here, we established an experimental periodontitis model by injecting lipopolysaccharide (LPS) derived from Porphyromonas gingivalis with or without periodontal ligation in mice exposed to an 8-h time shift jet-lag schedule every 3 days. By histomorphometry, tartrate acid phosphatase (TRAP) staining, RT-qPCR, ELISA, immunohistochemistry and immunofluorescence analysis, we found that CRD promoted the inflammatory response, alveolar bone resorption, macrophage infiltration and Kdm6a expression in macrophages. Macrophage-specific Kdm6a knockout mice were further used to elucidate the effects of Kdm6a deficiency on periodontitis. Kdm6a deletion in macrophages rescued periodontal tissue inflammation, osteoclastogenesis, and alveolar bone loss in a mouse model of periodontitis. These findings suggest that CRD may intensify periodontitis by increasing the infiltration and activation of macrophages. Kdm6a promotes the inflammatory response in macrophages, which may participate in aggravated periodontitis via CRD.


Subject(s)
Alveolar Bone Loss , Periodontitis , Mice , Animals , Alveolar Bone Loss/metabolism , Macrophages , Periodontitis/metabolism , Inflammation/metabolism , Histone Demethylases/metabolism , Porphyromonas gingivalis
18.
Gastroenterology ; 164(6): 921-936.e1, 2023 05.
Article in English | MEDLINE | ID: mdl-36764492

ABSTRACT

BACKGROUND & AIMS: Aberrant DNA methylation is frequent in colorectal cancer (CRC), but underlying mechanisms and pathologic consequences are poorly understood. METHODS: We disrupted active DNA demethylation genes Tet1 and/or Tdg from ApcMin mice and characterized the methylome and transcriptome of colonic adenomas. Data were compared to human colonic adenocarcinomas (COAD) in The Cancer Genome Atlas. RESULTS: There were increased numbers of small intestinal adenomas in ApcMin mice expressing the TdgN151A allele, whereas Tet1-deficient and Tet1/TdgN151A-double heterozygous ApcMin colonic adenomas were larger with features of erosion and invasion. We detected reduction in global DNA hypomethylation in colonic adenomas from Tet1- and Tdg-mutant ApcMin mice and hypermethylation of CpG islands in Tet1-mutant ApcMin adenomas. Up-regulation of inflammatory, immune, and interferon response genes was present in Tet1- and Tdg-mutant colonic adenomas compared to control ApcMin adenomas. This up-regulation was also seen in murine colonic organoids and human CRC lines infected with lentiviruses expressing TET1 or TDG short hairpin RNA. A 127-gene inflammatory signature separated colonic adenocarcinomas into 4 groups, closely aligned with their microsatellite or chromosomal instability and characterized by different levels of DNA methylation and DNMT1 expression that anticorrelated with TET1 expression. Tumors with the CpG island methylator phenotype (CIMP) had concerted high DNMT1/low TET1 expression. TET1 or TDG knockdown in CRC lines enhanced killing by natural killer cells. CONCLUSIONS: Our findings reveal a novel epigenetic regulation, linked to the type of genomic instability, by which TET1/TDG-mediated DNA demethylation decreases methylation levels and inflammatory/interferon/immune responses. CIMP in CRC is triggered by an imbalance of methylating activities over demethylating activities. These mice represent a model of CIMP CRC.


Subject(s)
Adenocarcinoma , Adenoma , Colonic Neoplasms , Colorectal Neoplasms , Animals , Humans , Mice , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenoma/genetics , Adenoma/pathology , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Colonic Neoplasms/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , CpG Islands/genetics , DNA Methylation , DNA-Binding Proteins/genetics , Epigenesis, Genetic , Mixed Function Oxygenases/genetics , Phenotype , Proto-Oncogene Proteins/genetics
19.
Environ Sci Pollut Res Int ; 30(16): 46248-46256, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36715803

ABSTRACT

Amisulbrom is an oomycete-specific fungicide that was developed by Nissan Chemical Industries Limited. The exposure of developing zebrafish embryo to amisulbrom caused disorders in the visual phototransduction system. However, the potential toxic mechanisms of amisulbrom on retinal development remains unclear. The research purpose of this study was to evaluate the adverse effects of amisulbrom on retinal development in a model organism, the zebrafish. Zebrafish embryos were treated with 0, 0.0075, 0.075, or 0.75 µM amisulbrom from 3 h post-fertilization (hpf) to 72 hpf. Compared with the control group, amisulbrom-treated zebrafish embryos displayed phenotypic microphthalmia, dysregulation of gene transcription levels (alcama, prox1a, sox2, vsx1, rho, bluops, rdops, uvops, and grops) related to the retinal cell layer differentiation, and increased retinal apoptosis. In addition, the content of glutathione and malondialdehyde increased significantly after exposure to amisulbrom. Overall, our data demonstrate the toxicity of amisulbrom to eye development, which will help to assess the potential ecotoxicological impacts posed by amisulbrom to aquatic species.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Embryo, Nonmammalian , Triazoles/pharmacology , Indoles/metabolism , Water Pollutants, Chemical/analysis , Oxidative Stress
20.
Neuroradiology ; 65(1): 55-64, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35835879

ABSTRACT

PURPOSE: To evaluate two advanced diffusion models, diffusion kurtosis imaging and the newly proposed mean apparent propagation factor-magnetic resonance imaging, in the grading of gliomas and the assessing of their proliferative activity. METHODS: Fifty-nine patients with clinically diagnosed and pathologically proven gliomas were enrolled in this retrospective study. All patients underwent DKI and MAP-MRI scans. Manually outline the ROI of the tumour parenchyma. After delineation, the imaging parameters were extracted using only the data from within the ROI including mean diffusion kurtosis (MK), return-to-origin probability (RTOP), Q-space inverse variance (QIV) and non-Gaussian index (NG), and the differences in each parameter in the classification of glioma were compared. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic performance of these parameters. RESULTS: MK, NG, RTOP and QIV were significantly different amongst the different grades of glioma. MK, NG and RTOP had excellent diagnostic value in differentiating high-grade from low-grade glioma, with largest areas under the curve (AUCs; 0.929, 0.933 and 0.819, respectively; P < 0.01). MK and NG had the largest AUCs (0.912 and 0.904) when differentiating grade II tumours from III tumours (P < 0.01) and large AUCs (0.791 and 0.786) when differentiating grade III from grade IV tumours. Correlation analysis of tumour proliferation activity showed that MK, NG and QIV were strongly correlated with the Ki-67 LI (P < 0.001). CONCLUSION: MK, RTOP and NG can effectively represent the microstructure of these altered tumours. Multimodal diffusion-weighted imaging is valuable for the preoperative evaluation of glioma grade and tumour proliferative activity.


Subject(s)
Brain Neoplasms , Glioma , Humans , Retrospective Studies , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Sensitivity and Specificity , Neoplasm Grading , Glioma/diagnostic imaging , Glioma/pathology , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL
...