Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 34(36)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37192603

ABSTRACT

The performance stability of the resistive switching (RS) is vital for a resistive random-access memory device. Here, by inserting a thin HfAlOxlayer between the InGaZnO (IGZO) layer and the bottom Pt electrode, the RS performance in amorphous IGZO memory device is significantly improved. Comparing with a typical metal-insulator-metal structure, the device with HfAlOxlayer exhibits lower switching voltages, faster switching speeds, lower switching energy and lower power consumption. As well, the uniformity of switching voltage and resistance state is also improved. Furthermore, the device with HfAlOxlayer exhibits long retention time (>104s at 85 °C) , high on/off ratio and more than 103cycles of endurance at atmospheric environment. Those substantial improvements in IGZO memory device are attributed to the interface effects with a HfAlOxinsertion layer. With such layer, the formation and rupture locations of Ag conductive filaments are better regulated and confined, thus an improved performance stability.

2.
Chem Commun (Camb) ; 56(47): 6336-6339, 2020 Jun 14.
Article in English | MEDLINE | ID: mdl-32406447

ABSTRACT

Two kinds of C-C bonded crystalline nanoporous graphenes (NPGs) have been synthesized by using a newly developed decarboxylation reaction. Both NPGs show good electrocatalytic oxygen evolution reaction (OER) activities. The clear pore-edge structures of the synthesized NPGs provide an ideal platform for further OER investigations.

3.
Nanoscale ; 6(18): 10879-86, 2014 Sep 21.
Article in English | MEDLINE | ID: mdl-25117579

ABSTRACT

Two-dimensional graphene has tremendous potential to be used as a transparent conducting electrode (TCE), owing to its high transparency and conductivity. To date graphene films have been applied to several kinds of solar cells except the Cu(In, Ga)Se2 (CIGS) solar cell. In this work, we present a novel TCE structure consisting of a doped graphene film and a thin layer of poly(methyl methacrylate) (PMMA) to replace the ZnO:Al (AZO) electrode for CIGS. By optimizing the contact between graphene and intrinsic ZnO (i-ZnO), a high power conversion efficiency (PCE) of 13.5% has been achieved, which is among the highest efficiencies of graphene-based solar cells ever reported and approaching those of AZO-based solar cells. Besides, the active area of our solar cells reaches 45 mm(2), much larger than other highly efficient graphene-based solar cells (>10%) reported so far. Moreover, compared with AZO-based CIGS solar cells, the total reflectance of the graphene-based CIGS solar cells is decreased and the quantum efficiency of the graphene-based CIGS is enhanced in the near infrared region (NIR), which strongly support graphene as a competitive candidate material for the TCE in the CIGS solar cell. Furthermore, the graphene/PMMA film can protect the solar cell from moisture, making the graphene-based solar cells much more stable than the AZO-based solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...