Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Exp Cell Res ; : 114168, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004201

ABSTRACT

Intramuscular fat (IMF) content significantly impacts meat quality. influenced by complex interactions between skeletal muscle cells and adipocytes. Adipogenesis plays a pivotal role in IMF formation. Exosomes, extracellular membranous nanovesicles, facilitate intercellular communication by transporting proteins, nucleic acids (DNA and RNA), and other biomolecules into target cells, thereby modulating cellular behaviors. Recent studies have linked exosome-derived microRNAs (miRNAs) and other cargo to adipogenic processes. Various cell types, including skeletal muscle cells, interact with adipocytes via exosome secretion and uptake. Exosomes entering adipocytes regulate adipogenesis by modulating key signaling pathways, thereby influencing the extent and distribution of IMF deposition.This review comprehensively explores the origin, formation, and mechanisms of exosome action, along with current research and their applications in adipogenesis. Emphasis is placed on exosome-mediated regulation of miRNAs, non-coding RNAs (ncRNAs), proteins, lipids, and other biomolecules during adipogenesis. Leveraging exosomal contents for genetic breeding and treating obesity-related disorders is discussed. Insights gathered contribute to advancing understanding and potential therapeutic applications of exosome-regulated adipogenesis mechanisms.

2.
Hematology ; 29(1): 2377849, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38994877

ABSTRACT

OBJECTIVES: To explore the changes in the coagulation function of patients newly diagnosed with multiple myeloma (MM) at different stages and with different M protein types, and to analyze the correlation between coagulation indexes and ß2-microglobulin (ß2-MG). METHODS: A total of 371 Patients with newly diagnosed MM (n = 371) and healthy controls (n = 48) were selected from January 2016 to December 2022. Baseline data, ß2-MG and coagulation index values were collected. Indexes included prothrombin time (PT), activated partial thromboplastin time (APPT), fibrinogen (FIB), thrombin time (TT), fibrinogen degradation products (FDP), and D-dimer(D-D). Patients were divided into different groups according to the Durie-Salmon staging system (DS), the International Staging System (ISS) and disease classification (M protein type). The levels of these six indexes were compared among the groups and the correlation between each index and ß2-MG was analyzed. RESULTS: Compared to the normal control group, the levels of PT, FIB, TT, FDP and D-D in the MM group were significantly higher (all P < 0.001). As DS and ISS staging increased, the levels of PT, TT, FDP and D-D also increased significantly (all P < 0.001). ß2-MG was positively correlated with PT, TT, and FDP levels (Spearman r = 0.157, 0.270, 0.108, respectively; all P < 0.05), and negatively correlated with FIB (r = -0.220, P < 0.001). Significant differences existed in the levels of these six indexes among different M protein types (all P < 0.001). Among them, PT and APTT increased significantly in the IgA-κ group, FIB increased in the λ light chain group, TT increased in the IgG-κ group, FDP increased in the κ light chain group, and D-D increased in the IgG-λ group. CONCLUSIONS: The degree of coagulation dysfunction in MM patients increases with disease stage and abnormal increases of various coagulation indicators occur in different M protein types and are closely related to ß2-MG.


Subject(s)
Blood Coagulation , Multiple Myeloma , beta 2-Microglobulin , Humans , Multiple Myeloma/blood , Multiple Myeloma/diagnosis , beta 2-Microglobulin/blood , Female , Male , Middle Aged , Aged , Adult
3.
Anim Reprod Sci ; 264: 107460, 2024 May.
Article in English | MEDLINE | ID: mdl-38564886

ABSTRACT

The incidence of bovine endometritis, which has a negative impact on the reproduction of dairy cows, has been recently increasing. In this study, the differential markers and metabolites of healthy cows and cows with endometritis were analyzed by measuring blood biochemical indicators and immune factors using biochemical and enzyme-linked immunosorbent assay kits combined with nontargeted metabolomics. The LC-QTOF platform was used to evaluate the serum metabolomics of healthy cows and cows with endometritis after 21-27 days of calving. The results showed that glucose, free fatty acid, calcium, sodium, albumin, and alanine aminotransferase levels were significantly lower in the serum of cows with endometritis than in healthy cows (P < 0.05). However, the serum potassium, interleukin-1, interleukin-6, and tumor necrosis factor levels were significantly higher in cows with endometritis (P < 0.05). In addition, the serum metabolome data analysis of the two groups showed that the expression of 468 metabolites was significantly different (P < 0.05), of which 291 were upregulated and 177 were downregulated. These metabolites were involved in 78 metabolic pathways, including amino acid, nucleotide, carbohydrate, lipid, and vitamin metabolism pathways; signal transduction pathways, and other biological pathways. Taken together, negative energy balance and immune activation, which are related to local abnormalities in amino acid, lipid, and carbohydrate metabolism, were the important causes of endometritis in dairy cows. Metabolites such as glucose, carnosine, dehydroascorbic acid, L-malic acid, tetrahydrofolic acid, and UDP-glucose may be used as key indicators in the hematological diagnosis and treatment of endometritis in dairy cows.


Subject(s)
Cattle Diseases , Endometritis , Metabolomics , Female , Cattle , Animals , Endometritis/veterinary , Endometritis/blood , Endometritis/metabolism , Cattle Diseases/blood , Cattle Diseases/metabolism , Biomarkers/blood
4.
Front Microbiol ; 15: 1368736, 2024.
Article in English | MEDLINE | ID: mdl-38650870

ABSTRACT

Introduction: This study examined the impact of adding coated sodium butyrate (CSB) to the diet on the growth performance, serum biochemistry, antioxidant capacity, intestinal morphology, and cecal microbiota of yellow-feathered broiler chickens. Methods: In this study, 240 yellow-feathered broiler chickens at 26 days old were divided into two groups: the control group (CON group) received a standard diet, and the experimental group (CSB group) received a diet with 0.5 g/kg of a supplement called CSB. Each group had 6 replicates, with 20 chickens in each replicate, and the experiment lasted for 36 days. Results: Compared to the CON group, the CSB group showed a slight but insignificant increase in average daily weight gain during the 26-62 day period, while feed intake significantly decreased. The CSB group exhibited significant increases in serum superoxide dismutase, catalase, and total antioxidant capacity. Additionally, the CSB group had significant increases in total protein and albumin content, as well as a significant decrease in blood ammonia levels. Compared to the CON group, the CSB group had significantly increased small intestine villus height and significantly decreased jejunal crypt depth. The abundance of Bacteroidetes and Bacteroides in the cecal microbiota of the CSB group was significantly higher than that of the CON group, while the abundance of Proteobacteria, Deferribacteres, and Epsilonbacteraeota was significantly lower than that of the CON group. Conclusion: These results suggest that adding CSB to the diet can improve the growth performance and antioxidant capacity of yellow-feathered broiler chickens while maintaining intestinal health.

5.
Mol Immunol ; 170: 46-56, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615627

ABSTRACT

Peritoneal B cells can be divided into B1 cells (CD11b+CD19+) and B2 cells (CD11b-CD19+) based on CD11b expression. B1 cells play a crucial role in the innate immune response by producing natural antibodies and cytokines. B2 cells share similar traits with B1 cells, influenced by the peritoneal environment. However, the response of both B1 and B2 cells to the same stimuli in the peritoneum remains uncertain. We isolated peritoneal B1 and B2 cells from mice and assessed differences in Interleukin-10(IL-10) secretion, apoptosis, and surface molecule expression following exposure to LPS and Interleukin-21(IL-21). Our findings indicate that B1 cells are potent IL-10 producers, possessing surface molecules with an IgMhiCD43+CD21low profile, and exhibit a propensity for apoptosis in vitro. Conversely, B2 cells exhibit lower IL-10 production and surface markers characterized as IgMlowCD43-CD21hi, indicative of some resistance to apoptosis. LPS stimulates MAPK phosphorylation in B1 and B2 cells, causing IL-10 production. Furthermore, LPS inhibits peritoneal B2 cell apoptosis by enhancing Bcl-xL expression. Conversely, IL-21 has no impact on IL-10 production in these cells. Nevertheless, impeding STAT3 phosphorylation permits IL-21 to increase IL-10 production in peritoneal B cells. Moreover, IL-21 significantly raises apoptosis levels in these cells, a process independent of STAT3 phosphorylation and possibly linked to reduced Bcl-xL expression. This study elucidates the distinct functional and response profiles of B1 and B2 cells in the peritoneum to stimuli like LPS and IL-21, highlighting their differential roles in immunological responses and B cell diversity.


Subject(s)
Apoptosis , B-Lymphocyte Subsets , Interleukin-10 , Interleukins , Lipopolysaccharides , Peritoneum , Animals , Mice , Antigens, CD19/immunology , Antigens, CD19/metabolism , Apoptosis/drug effects , Apoptosis/immunology , B-Lymphocyte Subsets/drug effects , B-Lymphocyte Subsets/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , bcl-X Protein/metabolism , bcl-X Protein/immunology , CD11b Antigen/metabolism , CD11b Antigen/immunology , Interleukin-10/immunology , Interleukin-10/metabolism , Interleukins/immunology , Interleukins/pharmacology , Lipopolysaccharides/pharmacology , Lipopolysaccharides/immunology , Mice, Inbred C57BL , Peritoneum/immunology , Peritoneum/cytology , Phosphorylation/drug effects , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/immunology
6.
BMC Public Health ; 24(1): 696, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38439008

ABSTRACT

BACKGROUND: Multimorbidity is becoming an increasingly serious public health challenge in the aging population. The impact of nutrients on multimorbidity remains to be determined and was explored using data from a UK cohort study. METHOD: Our research analysis is mainly based on the data collected by the United Kingdom Women's Cohort Study (UKWCS), which recruited 35,372 women aged 35-69 years at baseline (1995 to 1998), aiming to explore potential associations between diet and chronic diseases. Daily intakes of energy and nutrients were estimated using a validated 217-item food frequency questionnaire at recruitment. Multimorbidity was assessed using the Charlson comorbidity index (CCI) through electronic linkages to Hospital Episode Statistics up to March 2019. Cox's proportional hazards models were used to estimate associations between daily intakes of nutrients and risk of multimorbidity. Those associations were also analyzed in multinomial logistic regression as a sensitivity analysis. In addition, a stratified analysis was conducted with age 60 as the cutoff point. RESULTS: Among the 25,389 participants, 7,799 subjects (30.7%) were confirmed with multimorbidity over a median follow-up of 22 years. Compared with the lowest quintile, the highest quintile of daily intakes of energy and protein were associated with 8% and 12% increased risk of multimorbidity respectively (HR 1.08 (95% CI 1.01, 1.16), p-linearity = 0.022 for energy; 1.12 (1.04, 1.21), p-linearity = 0.003 for protein). Higher quintiles of daily intakes of vitamin C and iron had a slightly lowered risk of multimorbidity, compared to the lowest quintile. A significantly higher risk of multimorbidity was found to be linearly associated with higher intake quintiles of vitamin B12 and vitamin D (p-linearity = 0.001 and 0.002, respectively) in Cox models, which became insignificant in multinomial logistic regression. There was some evidence of effect modification by age in intakes of iron and vitamin B1 associated with the risk of multimorbidity (p-interaction = 0.006 and 0.025, respectively). CONCLUSIONS: Our findings highlight a link between nutrient intake and multimorbidity risk. However, there is uncertainty in our results, and more research is needed before definite conclusions can be reached.


Subject(s)
Eating , Multimorbidity , Female , Humans , Aged , Cohort Studies , Prospective Studies , Vitamins , Iron
7.
Trop Anim Health Prod ; 56(1): 44, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38221587

ABSTRACT

Calf survival is not only an animal welfare issue but also helps to avoid huge losses in economic and genetic material due to calf mortality. Therefore, improving calf survival is essential in dairy breeding. The objective of this study was to explore the factors affecting the survival of Holstein calves in the Ningxia Region and to estimate the genetic parameters of calves using linear models and threshold models. Descriptive statistics were made for 43,847 Holstein calves born from 2018 to 2022 in Ningxia. The number of calves that died at 2-30 d was the highest, the survival rate was the lowest at 451-750 d, followed by 61-180 d and 2-30 d. Studies on the survival rates of calves born in different months have found that calves born in April have the lowest survival rates and calves born in October and December have higher survival rates. Calves born in autumn, third parity, and singleton calves are more likely to survive. The heritability of calf survival traits ranged from 0.002 ~ 0.136. Thus survival is a low heritability trait. Genetic correlation between different survival stages ranged from 0.3991 (2-30 d to 451-750 d) to 0.9985 (361-450 d to 451-750 d), the phenotypic correlation ranged from 0.1476 (2-30 d to 451-750 d) to 0.9582 (361-450 d to 451-750 d). The low genetic correlation between early and late survival suggests that survival in early and late stages may be influenced by different genetic factors. This study is helpful to understand the survival status of Holstein calves and provide a theoretical basis for improving the survival rate of calves.


Subject(s)
Animal Welfare , Parturition , Pregnancy , Female , Animals , Cattle/genetics , Seasons , Linear Models
8.
Reprod Domest Anim ; 59(1): e14497, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37917556

ABSTRACT

Milk production traits as the most important economic traits of dairy cows, they directly reflect the benefits of breeding and the economic benefits of pasture. In this study, A disintegrin and metalloproteinase-12 (ADAM12), Parkinson's disease gene 2 (PRKN) and dipeptidyl peptidase-like protein subtype 6 (DPP6) polymorphism in 384 Chinese Holstein cows were detected by time-of-flight mass spectrometry and through statistical analysis using software such as Popgene 32, SAS 9.4 and Origin 2022, the relationship between single nucleotide polymorphisms (SNPs) of three genes with four milk production traits such as daily milk yield (DMY), milk fat percentage (MFP), milk protein percentage (MPP) and somatic cell score (SCS) was verified at molecular level. The results showed that four polymorphic loci (116,467,133, 116,604,487, 116,618,268 and 116,835,111) of DPP6 gene, two polymorphic loci (97,665,052 and 97,159,837) of PRKN gene and two polymorphic loci (45,542,714 and 45,553,888) of ADAM12 gene were detected. PRKN-97665052, DPP6-116467133, ADAM12-45553888, DPP6-116604487 and DPP6-116835111 were all in Hardy-Weinberg equilibrium state (p > .05). ADAM12-45542714, PRKN-97159837 and PRKN-97665052 were moderately polymorphic (0.25 ≤ PIC <0.50) in Holstein. It is evident that the selection potential and genetic variation of these five loci are relatively large, and the genetic richness is relatively high. The correlation analysis of different genotypes between these eight loci and milk production traits of Holstein showed that ADAM12-45542714 and DPP6-116835111 (p < .01) had an extremely significant effects on the DMY of Chinese Holstein in Ningxia, while PRKN-97665052 had an extremely significant effect on MFP (p < .01). The effect of PRKN-97665052 and DPP6-116467133 on MPP of Holstein were extremely significant (p < .01). DPP6-116618268 had an extremely significant effect on the SCS of Holstein in Ningxia (p < .01), and AA genotype individuals showed a higher SCS than GG genotype individuals; the other two loci (ADAM12-45553888 and DPP6-116604487) had no significant effects on milk production traits of Holstein (p > .05). In addition, through the joint analysis of DPP6, PRKN and ADAM12 gene loci, it was found that the interaction effect between the three gene loci could significantly affect the DMY, SCS (p < .01) and MPP (p < .05). In conclusion, several different loci of DPP6, PRKN and ADAM12 genes can affect the milk production traits of Holstein to different degrees. PRKN, DPP6 and ADAM12 genes can be used as potential candidate genes for milk production traits of Holstein for marker-assisted selection, providing theoretical basis for breeding of Holstein.


Subject(s)
Lactation , Milk , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Female , Humans , ADAM12 Protein/genetics , ADAM12 Protein/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/analysis , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Genotype , Lactation/genetics , Milk/chemistry , Milk Proteins , Nerve Tissue Proteins/analysis , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Phenotype , Potassium Channels/analysis , Potassium Channels/genetics , Potassium Channels/metabolism , Proteins/metabolism , Ubiquitin-Protein Ligases/genetics
9.
Animals (Basel) ; 13(22)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-38003111

ABSTRACT

The shortage of high-quality coarse feed resources is the main factor that restricts the development of animal husbandry in many developing countries. The present study aimed to investigate the effects of replacing corn silage with daylily silage on the growth performance, slaughter performance, blood biochemical indicators, meat quality, and muscle amino acid composition of Tan sheep. A total of 72 healthy Tan sheep were randomly assigned to four groups. In each group, 0%, 20%, 40%, and 60% of corn silage were replaced with daylily silage (denoted as CON, HC20, HC40, and HC60, respectively). Tan sheep fed with daylily silage showed no significant adverse effects on their growth performance, meat quality, and muscle amino acid composition (p > 0.05). Some increase was observed in the carcass fat content value (GR-value, p < 0.05), thickness of backfat (p < 0.05), and the blood urea level (p < 0.05). These findings indicate that the utilization of daylily silage instead of whole-plant corn silage has no adverse effects on the growth performance and meat quality of Tan sheep, thus indicating that it can partially replace whole-plant corn feed as a feed resource for Tan sheep.

10.
Life (Basel) ; 13(11)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38004314

ABSTRACT

This research investigates how fourth-instar larvae of the potato tuber moth, Phthorimaea operculella, respond to plant secondary metabolites (sucrose, glucose, nicotine, and tannic acid) both in terms of gustatory electrophysiology and feeding behavior. The objective is to establish a theoretical foundation for employing plant-derived compounds in potato tuber moth control. We employed single-sensillum recording techniques and dual-choice leaf disk assays to assess the gustatory electrophysiological responses and feeding preferences of these larvae towards the mentioned compounds. Sensory neurons responsive to sucrose, glucose, nicotine, and tannic acid were identified in the larvae's medial and lateral sensilla styloconica. Neuronal activity was influenced by stimulus type and concentration. Notably, the two types of sensilla styloconica displayed distinct response patterns for sucrose and glucose while they had similar firing patterns towards nicotine and tannic acid. Sucrose and glucose significantly promoted larval feeding, while nicotine and tannic acid had significant inhibitory effects. These findings demonstrate that the medial and lateral sensilla styloconica house sensory neurons sensitive to both feeding stimulants and inhibitors, albeit with differing response profiles and sensitivities. This study suggests that sucrose and glucose are promising candidates for feeding stimulants, while nicotine and tannic acid show potential as effective feeding inhibitors of P. operculella larvae.

11.
Int J Mol Sci ; 24(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37569258

ABSTRACT

Gene expression in cells is determined by the epigenetic state of chromatin. Therefore, the study of epigenetic changes is very important to understand the regulatory mechanism of genes at the molecular, cellular, tissue and organ levels. DNA methylation is one of the most studied epigenetic modifications, which plays an important role in maintaining genome stability and ensuring normal growth and development. Studies have shown that methylation levels in bovine primordial germ cells, the rearrangement of methylation during embryonic development and abnormal methylation during placental development are all closely related to their reproductive processes. In addition, the application of bovine male sterility and assisted reproductive technology is also related to DNA methylation. This review introduces the principle, development of detection methods and application conditions of DNA methylation, with emphasis on the relationship between DNA methylation dynamics and bovine spermatogenesis, embryonic development, disease resistance and muscle and fat development, in order to provide theoretical basis for the application of DNA methylation in cattle breeding in the future.


Subject(s)
DNA Methylation , Placenta , Animals , Cattle , Male , Female , Pregnancy , Epigenesis, Genetic , Muscles , Gene Expression
12.
J Gastrointest Oncol ; 14(3): 1320-1330, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37435199

ABSTRACT

Background: Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide, and the incidence of CRC has increased rapidly in recent years. Due to the high invasiveness of colonoscopy and the low accuracy of alternative diagnostic methods, the diagnosis of CRC remains a serious problem. Thus, molecular biomarkers for CRC need to be identified. Methods: In this study, RNA-sequencing data from The Cancer Genome Atlas (TCGA) database were used to identify the long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs), and micro RNAs (miRNAs) that were differentially expressed between the CRC and normal tissues. Based on the gene expression and clinical features, the results of the weighted gene co-expression network analysis (WGCNA) and the binding relationships between miRNAs and lncRNAs and mRNAs were used to establish a CRC-related competing endogenous RNA (ceRNA) network. Results: The core miRNAs (i.e., mir-874, mir-92a-1, and mir-940) in the network were identified. Among them, mir-874 was negatively correlated with the overall survival (OS) of patients. The protein-coding genes in the ceRNA network included IZUMO4, WT1, NPEPL1, TEX22, PPFIA4, and SFXN3, and the lncRNAs were LINC00858 and PRR7-AS1. These genes were significantly highly expressed in CRC according to validations in other independent data sets. Conclusions: In conclusion, this study established a network of the co-expressed ceRNAs associated with CRC and identified the genes and miRNAs related to the prognosis of CRC patients.

13.
Int J Biol Macromol ; 244: 125304, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37315674

ABSTRACT

ADAM metallopeptidase with thrombospondin type 1 motif (ADAMTS) are secreted, multi-domain matrix-related zinc endopeptidases that play a role in organogenesis, assembly and degradation of extracellular matrix (ECM), cancer and inflammation. Genome-wide identification and analysis of the bovine ADAMTS gene family has not yet been carried out. In this study, 19 ADAMTS family genes were identified in Bos taurus by genome-wide bioinformatics analysis, and they were unevenly distributed on 12 chromosomes. Phylogenetic analysis shows that the Bos taurus ADAMTS are divided into eight subfamilies, with highly consistent gene structures and motifs within the same subfamily. Collinearity analysis showed that the Bos taurus ADAMTS gene family is homologous to other bovine subfamily species, and many ADAMTS genes may be derived from tandem replication and segmental replication. In addition, based on the analysis of RNA-seq data, we found the expression pattern of ADAMTS gene in different tissues. Meanwhile, we also analyzed the expression profile of ADAMTS gene in the inflammatory response of bovine mammary epithelial cells (BMECs) stimulated by LPS by qRT-PCR. The results can provide ideas for understanding the evolutionary relationship and expression pattern of ADAMTS gene in Bovidae, and clarify the theoretical basis of the function of ADAMTS in inflammation.


Subject(s)
ADAM Proteins , Endopeptidases , Animals , Cattle , Humans , ADAM Proteins/genetics , ADAM Proteins/chemistry , ADAM Proteins/metabolism , Phylogeny , Endopeptidases/metabolism , Epithelial Cells/metabolism , Inflammation/genetics
14.
Cells ; 12(8)2023 04 17.
Article in English | MEDLINE | ID: mdl-37190084

ABSTRACT

Circular RNAs (CircRNAs) are covalently closed-loop non-coding RNA (ncRNA) molecules present in eukaryotes. Numerous studies have demonstrated that circRNAs are important regulators of bovine fat deposition, but their precise mechanisms remain unclear. Previous transcriptome sequencing studies have indicated that circADAMTS16, a circRNA derived from the a disintegrin-like metalloproteinases with the thrombospondin motif 16 (ADAMTS16) gene, is high expressed in bovine adipose tissue. This gives a hint that the circRNA may be involved in the process of bovine lipid metabolism. In this study, the targeting relationship between circADAMTS16 and miR-10167-3p was verified using a dual-luciferase reporter assay. Then, the functions of circADAMTS16 and miR-10167-3p in bovine adipocytes were explored through gain-of-function and lose-of-function. The mRNA expression levels of genes were detected by real-time quantitative PCR (qPCR), and lipid droplet formation was phenotypically evaluated by Oil Red O staining. Cell proliferation and apoptosis were detected using CCK-8, EdU, and flow cytometry. We demonstrated that circADAMTS16 targeted binding to miR-10167-3p. The up-regulation of circADAMTS16 inhibited the differentiation of bovine preadipocytes, and the overexpression of miR-10167-3p promoted the differentiation of bovine preadipocytes. Meanwhile, CCK-8 and EdU results indicated that circADAMTS16 promoted adipocyte proliferation. Subsequently, flow cytometry analysis showed that circADAMTS16 promoted cell transition from G0/G1 phase to S phase, and inhibited cell apoptosis. However, up-regulation of miR-10167-3p inhibited cell proliferation and promoted apoptosis. Briefly, circADAMTS16 inhibited the differentiation and promotes the proliferation of bovine adipocytes by targeting miR-10167-3p during bovine fat deposition, which provides new insights into the mechanism of circRNAs regulation of beef quality.


Subject(s)
MicroRNAs , Cattle , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Sincalide/metabolism , Cell Differentiation/genetics , Cell Proliferation/genetics , Adipocytes/metabolism
15.
Vet Sci ; 10(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36851411

ABSTRACT

Negative energy balance (NEB) during the perinatal period leads to metabolic and immunological disorders in dairy cows, resulting in systemic responses and inflammation. The innate immune system is crucial for the host's protection and inflammatory response. However, systematic research is still lacking on how NEB affects the innate immune system to alter the 'host defense capability and inflammatory response. In this investigation, raw transcriptome data of adipose, blood, endometrial, hypothalamus, and liver tissues were downloaded from a public database, cleaned, aligned, quantified, and batch-corrected. The innate immune gene list was retrieved from innateDB, followed by the expression matrix of innate immune genes in various tissues for differential expression analysis, principle component analysis (PCA), and gene set enrichment analysis (GSEA). Under the effect of NEB, adipose tissue had the most differentially expressed genes, which were predominantly up-regulated, whereas blood GSEA had the most enriched biological processes, which were predominantly down-regulated. The gene sets shared by different tissues, which are predominantly involved in biological processes associated with defense responses and inflammation, were dramatically down-regulated in endometrial tissues and highly up-regulated in other tissues. Under the impact of NEB, LBP, PTX3, S100A12, and LCN2 play essential roles in metabolism and immunological control. In conclusion, NEB can downregulate the defensive response of innate immune genes in endometrial, upregulate the immune and inflammatory response of other tissues, activate the host defense response, and increase the systemic inflammatory response. The analysis of the effects of NEB on innate immune genes from the multiple tissues analysis provides new insights into the crosstalk between metabolism and immunity and also provides potential molecular targets for disease diagnosis and disease resistance breeding in dairy cows.

16.
Metabolites ; 13(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36677001

ABSTRACT

It was shown that microRNAs (miRNAs) play an important role in the synthesis of milk fat; thus, this manuscript evaluated whether exogenous miRNA (xeno-miRNAs) from alfalfa could influence the milk fat content in dairy cows. At first, mtr-miR168b was screened from dairy cow milk and blood. Then, EdU staining, flow cytometry, Oil Red O staining, qRT-PCR, and WB were applied to explore the effect of xeno-miR168b on the proliferation, apoptosis, and lipid metabolism of bovine mammary epithelial cells (BMECs). Finally, in order to clarify the pathway that regulated the lipid metabolism of BMECs using xeno-miR168b, a double-luciferase reporter assay was used to verify the target gene related to milk fat. These results showed that overexpression of xeno-miR168b inhibited cell proliferation but promoted apoptosis, which also decreased the expression of several lipid metabolism genes, including PPARγ, SCD1, C/EBPß, and SREBP1, significantly inhibited lipid droplet formation, and reduced triglyceride content in BMECs. Furthermore, the targeting relationship between CPT1A and xeno-miR168b was determined and it was confirmed that CPT1A silencing reduced the expression of lipid metabolism genes and inhibited fat accumulation in BMECs. These findings identified xeno-miR168b from alfalfa as a cross-kingdom regulatory element that could influence milk fat content in dairy cows by modulating CPT1A expression.

17.
Anim Biotechnol ; 34(4): 1447-1454, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35254208

ABSTRACT

MicroRNAs have been recently reported to act as key regulators of adipogenesis, a multifactorial complex process. One miRNA, miR-302b, is an important regulator of cell proliferation and differentiation and controls cancer development, but we speculate that miR-302b may also regulate bovine adipogenesis. Herein we have evaluated the role of this miRNA in bovine adipocyte differentiation using quantitative Real-Time Polymerase Chain Reaction (qRT-PCR), Oil Red O staining, a dual-luciferase reporter. CDK2 was identified as the target gene of miR-302b, and miR-302b agomir promoted mRNA and protein expression levels of adipocyte-specific genes. In addition, a CCK-8 kit was used to show that miR-302b agomir, but not the negative control, inhibits preadipocyte proliferation. In conclusion, miR-302b promotes bovine preadipocyte differentiation and inhibits proliferation by targeting CDK2.


Subject(s)
MicroRNAs , Animals , Cattle , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Differentiation/genetics , Cell Proliferation/genetics , Adipogenesis/genetics , Adipocytes/metabolism
18.
Anim Genet ; 53(6): 740-760, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36193627

ABSTRACT

As key regulators, long non-coding RNAs (lncRNAs) play a crucial role in the ruminant mammary gland. However, the function of lncRNAs in milk fat synthesis from dairy cows is largely unknown. In this study, we used the weighted gene co-expression network analysis (WGCNA) to comprehensive analyze the expression profile data of lncRNAs from the group's previous Illumina PE150 sequencing results based on bovine mammary epithelial cells from high- and low-milk-fat-percentage (MFP) cows, and identify core_lncRNAs significantly associated with MFP by module membership (MM) and gene significance (GS). Functional enrichment analysis (Gene Ontology, Kyoto Encyclopedia of Genes and Genomes) of core_lncRNA target genes (co-localization and co-expression) was performed to screen potential lncRNAs regulating milk fat metabolism and further construct an interactive regulatory network of lipid metabolism-related competing endogenous RNAs (ceRNAs). A total of 4876 lncRNAs were used to construct the WGCNA. The MEdarkturquoise module among the 19 modules obtained was significantly associated with MFP (r = 0.78, p-value <0.05) and contained 64 core_lncRNAs (MM > 0.8, GS > 0.4). Twenty-four lipid metabolism-related lncRNAs were identified by core_lncRNA target gene enrichment analysis. TCONS_00054233, TCONS_00152292, TCONS_00048619, TCONS_00033839, TCONS_00153791 and TCONS_00074642 were key candidate lncRNAs for regulating milk fat synthesis. The 22 ceRNAs most likely to be involved in milk fat metabolism were constructed by interaction network analysis, and TCONS_00133813 and bta-miR-2454-5p were located at the network's core. TCONS_00133813_bta-miR-2454-5p_TNFAIP3, TCONS_00133813_bta-miR-2454-5p_ARRB1 and TCONS_00133813_bta-miR-2454-5p_PIK3R1 are key candidate ceRNAs associated with milk fat metabolism. This study provides a framework for the co-expression module of MFP-related lncRNAs in ruminants, identifies several major lncRNAs and ceRNAs that influence milk fat synthesis, and provides a new understanding of the complex biology of milk fat synthesis in dairy cows.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Female , Cattle/genetics , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Milk/metabolism , MicroRNAs/genetics , Lipid Metabolism , High-Throughput Nucleotide Sequencing , Gene Regulatory Networks
19.
Vet Med Sci ; 8(5): 2104-2113, 2022 09.
Article in English | MEDLINE | ID: mdl-35689831

ABSTRACT

Circular RNAs (circRNAs) are important transcriptional regulatory RNA molecule that can regulate the transcription of downstream genes by competitive binding of miRNAs or coding proteins or by blocking mRNAs translation. Numerous studies have shown that circRNAs are extensively involved in cell proliferation, differentiation and apoptosis, gene transcription and signal transduction. Fat deposition and muscle development have important effects on beef traits. CircRNAs are involved in regulating bovine fat and muscle cells and are differentially expressed in the tissues composed of these cells, suggesting that circRNAs play an important role in regulating bovine fat formation and muscle development. This review describes differential expression of circRNAs in bovine fat and muscle tissues, research progress in understanding how circRNAs regulate the proliferation and differentiation of bovine fat and muscle cells through competing endogenous RNAs networks, and provide a reference for the subsequent research on the molecular mechanism of circRNAs in regulating fat deposition and muscle development in cattle.


Subject(s)
MicroRNAs , RNA, Circular , Animals , Cattle , Gene Expression Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle Development , RNA, Messenger/genetics
20.
Immun Inflamm Dis ; 10(7): e637, 2022 07.
Article in English | MEDLINE | ID: mdl-35759229

ABSTRACT

Renal cell cancer (RCC) is the most lethal of all the common urologic cancers and constitutes 2.2% of all malignancy diagnoses. The incidence of RCC has been steadily increasing in recent decades. The classic risk factors of RCC include smoking, hypertension, obesity, genetics, and genetic mutations. Recent studies also revealed that RCC was an immunogenic tumor and affected by host immune status. Among the pan-cance, RCC presented with the highest degree of immune infiltration, indicating RCC patients might benefit from immunotherapy. A new immune classification of RCC has been developed by Su et al. based on tumor-infiltrating lymphocytes to guide clinical practice. However, these studies mainly focus on biomarkers derived from tumor microenvironment (TME), the biomarkers based on peripheral blood samples to RCC have rarely been described. We collected peripheral blood samples from RCC patients and their matched healthy controls and detected the number of IL-2 and IFN-γ producing cells by implementing an enzyme-linked immunospot (ELISPOT) assay. This is the first study to report blood-based immune biomarkers for RCC using an ELISPOT assay. Our results suggested the frequency of IFN-γ producing cells but not IL-2 producing cells was associated with RCC risk. These findings warrant further validation in larger prospective studies.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Biomarkers , Carcinoma, Renal Cell/diagnosis , Humans , Interferon-gamma , Kidney Neoplasms/diagnosis , Prospective Studies , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...