Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Pathol ; 32(4): 426-38, 2004.
Article in English | MEDLINE | ID: mdl-15204966

ABSTRACT

A long-term study was conducted in female F344 rats to determine the relative importance of dose, treatment duration, and age at initiation of treatment on the incidence of teriparatide [rhPTH[1-34)]-induced bone proliferative lesions. Treatment groups consisted of different combinations of dose (0, 5, or 30 microg/kg/d), treatment duration (6, 20, or 24 months) and age at initiation of treatment (2 or 6 months of age). The primary endpoints were the incidence of bone neoplasms and effects on bone mass and structure as evaluated by quantitative computed tomography and histomorphometery. Significant increases in the incidence of bone tumors (osteoma, osteoblastoma, and osteosarcoma) occurred in rats treated with 30 microg/kg for 20 or 24 months. No neoplasms were found when the 5 microg/kg treatment was initiated at 6 months of age and continued for either 6 or 20 months (up to 70% of life span). This treatment regimen defined a "no-effect" dose for neoplasm formation that nevertheless resulted in substantial increases in bone mass. These results demonstrate that treatment duration and administered dose are the most important factors in the teriparatide-induced bone tumors in rats.


Subject(s)
Aging/physiology , Bone Neoplasms/chemically induced , Carcinogens/toxicity , Teriparatide/toxicity , Toxicity Tests, Chronic , Animals , Bone Density/drug effects , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/epidemiology , Bone Neoplasms/pathology , Bone Neoplasms/veterinary , Carcinogenicity Tests/veterinary , Carcinogens/administration & dosage , Dose-Response Relationship, Drug , Female , Humans , Incidence , Male , No-Observed-Adverse-Effect Level , Rats , Rats, Inbred F344 , Recombinant Proteins/administration & dosage , Recombinant Proteins/toxicity , Sex Factors , Teriparatide/administration & dosage , Time Factors , Toxicity Tests, Chronic/veterinary , Ultrasonography
2.
Endocrinology ; 143(10): 3994-4006, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12239111

ABSTRACT

Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) are two closely related peptides that bind two homologous G protein-coupled receptors, VIP/PACAP receptor 1 (VPAC1R) and VIP/PACAP receptor II (VPAC2R), with equally high affinity. Recent reports suggest that VPAC2R plays a role in circadian rhythm and T cell functions. To further elucidate the functional activities of VPAC2R, we generated VPAC2R-deficient mice by deleting exons VIII-X of the VPAC2R gene. The VPAC2R-deficient mice showed retarded growth and had reduced serum IGF-I levels compared with gender-matched, wild-type siblings. The mutant mice appeared healthy and fertile at a young adult age. However, older male mutant mice exhibited diffuse seminiferous tubular degeneration with hypospermia and reduced fertility rate. The mutant mice appeared to have an increase in insulin sensitivity. VPAC2R-deficient mice had increased lean mass and decreased fat mass with reduced serum leptin levels. Indirect calorimetry experiments showed that the respiratory quotient values immediately following the transition into the dark cycle were significantly higher in male knockout mice for about 4 h. Additionally, male and female VPAC2R-deficient mice presented an increased basal metabolic rate (23% and 10%, respectively) compared with their wild-type siblings. Our results suggest that VPAC2R plays an important role in growth, basal energy expenditure, and male reproductive functions.


Subject(s)
Basal Metabolism/physiology , Growth/physiology , Receptors, Vasoactive Intestinal Peptide/physiology , Amino Acid Sequence/genetics , Animals , Body Composition , Female , Growth Disorders/genetics , Infertility, Male/genetics , Insulin/physiology , Insulin-Like Growth Factor I/analysis , Leptin/blood , Male , Mice , Mice, Knockout/genetics , Molecular Sequence Data , Receptors, Vasoactive Intestinal Peptide/deficiency , Receptors, Vasoactive Intestinal Peptide/genetics , Receptors, Vasoactive Intestinal Peptide, Type II , Reference Values , Seminiferous Tubules/pathology , Sex Characteristics , Sperm Count
SELECTION OF CITATIONS
SEARCH DETAIL
...