Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Front Plant Sci ; 15: 1385980, 2024.
Article in English | MEDLINE | ID: mdl-38693926

ABSTRACT

Resource-based water shortages, uncoordinated irrigation, and fertilization are prevalent challenges in agricultural production. The scientific selection of appropriate water and fertilizer management methods is important for improving the utilization efficiency of agricultural resources and alleviating agricultural non-point source pollution. This study focused on wolfberry and compared the effects of four irrigation levels [full irrigation (W0, 75%-85% θf), slight water deficit (W1, 65%-75% θf), moderate water deficit (W2, 55%-65% θf), and severe water deficit (W3, 45%-55% θf)] and four nitrogen application levels [no nitrogen application (N0, 0 kg·ha-1), low nitrogen application (N1, 150 kg·ha-1), medium nitrogen application (N2, 300 kg·ha-1), and high nitrogen application (N3, 450 kg·ha-1)] on soil nitrate nitrogen (NO3 --N) transport, plant nitrogen allocation, and soil nitrous oxide (N2O) emissions during the harvest period of wolfberry. And this study used CRITIC-entropy weights-TOPSIS model to evaluate 16 water and nitrogen regulation models comprehensively. The results revealed the following: (1) The NO3 --N content of the soil decreased with increasing horizontal distance from the wolfberry. It initially decreased, then increased, and finally decreased with an increase in soil depth. The average NO3 --N content in the 0-100 cm soil layer ranged from 3.95-13.29 mg·kg-1, indicating that W0 > W1, W2, W3, and N3 > N2 > N1 > N0. (2) The soil NO3 --N accumulation ranged from 64.45-215.27 kg·ha-1 under varying water and nitrogen levels, demonstrating a decreasing trend with increasing horizontal distance. The NO3 --N accumulation at each horizontal distance increased with increasing irrigation and nitrogen application. The NO3 --N accumulation of W0N3 treatment increased by 5.55%-57.60% compared with the other treatments. (3) The total nitrogen content and nitrogen uptake in all wolfberry organs were W1 > W0 > W2 > W3, and N2 > N3 > N1 > N0. The maximum total nitrogen content and nitrogen uptake in W1N2 treatment were 3.25% and 27.82 kg·ha-1 in the roots, 3.30% and 57.19 kg·ha-1 in the stems, 3.91% and 11.88 kg·ha-1 in the leaves, and 2.42% and 63.56 kg·ha-1 in the fruits, respectively. (4) The emission flux and total emission of N2O increased with increasing irrigation and nitrogen application. The emission flux exhibited a transient peak (116.39-177.91 ug·m-2·h-1) after irrigation. The intensity of N2O emissions initially decreased and then increased with an increase in the irrigation amount. It also initially increased with increasing nitrogen application amount, then decreased, and finally increased again. The maximum emission intensity was observed under the W3N3 treatment (0.23 kg·kg-1). The N2O emission coefficients ranged from 0.17%-0.39%, in the order of W0 > W1 > W2 > W3 (except for N1) and N1 > N2 > N3. (5) Under varying water and nitrogen concentrations, N2O emission flux showed a positive linear correlation with soil pore water content and NO3 --N content and a negative linear correlation with soil temperature. The comprehensive evaluation revealed that a slight water deficit (65%-75% θf) combined with medium nitrogen application (300 kg·ha-1) decreased soil NO3 --N leaching, increased nitrogen uptake, and reduced N2O emission. These findings can serve as a reference for improving the efficiency and reducing emissions of wolfberry in the Yellow River irrigation region of Gansu Province and in similar climate zones.

2.
Stem Cell Res ; 77: 103436, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38733811

ABSTRACT

Y chromosome deletion and karyotype abnormalities are commonly associated with congenital non-obstructive azoospermia, impairing spermatogenesis. Specifically, the deletion of the Y chromosome Azoospermia factor a (AZFa) has been identified in infertile males with severely impaired spermatogenesis. AZFa, encompassing megabase-scale of the Y chromosome region, poses challenges in modeling AZFa deletion-related male infertility using gene editing tools. Here, we successfully created an AZFa-deleted human embryonic stem cell line utilizing the CRISPR/Cas9 gene editing tool. Our analysis indicates the AZFa-deleted stem cell line holds promise for differentiation into ectoderm, mesoderm, and endoderm, highlighting its potential for further comprehensive study.

3.
4.
Plants (Basel) ; 13(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38674504

ABSTRACT

In the production of economic forests, there are common issues such as excessive application of water and fertilizer, redundant plant growth, and low economic benefits. Reasonable water and fertilizer management can not only help address these problems but also improve the absorption and use efficiency of water and fertilizer resources by plants, promoting the green and efficient development of the fruit and forestry industry. In order to explore a suitable water and nitrogen management mode for Lycium barbarum, field experiments were conducted in this study from 2021 to 2022. Specifically, four irrigation modes (according to the proportion ratio of soil moisture content to field moisture capacity θf, 45-55% θf (W1, severe water deficiency), 55-65% θf (W2, moderate water deficiency), 65-75% θf (W3, mild water deficiency), and 75-85% θf (W4, sufficient irrigation)) and four nitrogen application levels (0 kg·ha-1 (N0, no nitrogen application), 150 kg·ha-1 (N1, low nitrogen application level), 300 kg·ha-1 (N2, medium nitrogen application level), and 450 kg·ha-1 (N3, high nitrogen application level)) were set up to analyze the influences of water and nitrogen control on the plant height, stem diameter, chlorophyll content, photosynthetic characteristics and yield, and economic benefits of Lycium barbarum in the Lycium barbarum + Alfalfa system. The study results show that the plant height and stem diameter increment of Lycium barbarum increase with the irrigation amount, increasing first and then decreasing with the increase in the nitrogen application level. Meanwhile, the chlorophyll contents in Lycium barbarum continuously increase throughout their growth periods, with Lycium barbarum treated with W4N2 during all growth periods presenting the highest contents of chlorophyll. In a Lycium barbarum + Alfalfa system, the daily variation curve of the Lycium barbarum net photosynthetic rate presents a unimodal pattern, with maximum values of the daily average net photosynthetic rate and daily carboxylation rate appearing among W4N2-treated plants (19.56 µmol·m-2·s-1 and 157.06 mmol·m-2·s-1). Meanwhile, the transpiration rates of Lycium barbarum plants continuously decrease with the increased degree of water deficiency and decreased nitrogen application level. W1N2-treated plants exhibit the highest leaf daily average water use efficiency (3.31 µmol·s-1), presenting an increase of 0.50-10.47% in efficiency compared with plants under other treatments. The coupling of water and nitrogen has significantly improved the yields and economic benefits of Lycium barbarum plants, with W4N2-treated and W3N2-treated plants presenting the highest dried fruit yield (2623.07 kg·ha-1) and net income (50,700 CNY·ha-1), respectively. Furthermore, compared with other treatment methods, these two treatment methods (W4N2 and W3N2) exhibit increases of 4.04-84.08% and 3.89-123.35% in dried fruit yield and net income indexes, respectively. Regression analysis shows that, in a Lycium barbarum + Alfalfa system, both high yields and economic benefits of Lycium barbarum plants can be achieved using an irrigation amount of 4367.33-4415.07 m3·ha-1 and a nitrogen application level of 339.80-367.35 kg·ha-1. This study can provide a reference for improving the productivity of Lycium barbarum plants and achieving a rational supply of water and nitrogen in Lyciun barbarum + Alfalfa systems in the Yellow River Irrigation Area of Gansu, China, and other similar ecological areas.

5.
Am J Reprod Immunol ; 91(3): e13831, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38444103

ABSTRACT

BACKGROUND: The COVID-19 pandemic is an unprecedented health crisis that has affected in vitro fertilization practices globally. Previous studies have shown that SARS-CoV-2 impacts the quality of embryos by inducing an immunological response in infertile patients. In this study, the early embryonic development of SARS-CoV-2-infected infertile patients was investigated. METHODS: Sixty-five SARS-CoV-2 infected infertile patients and 258 controls were involved in this study. The major outcome parameters for the cycle were analyzed, including the number of oocytes, maturation oocytes, available embryos per cycle, and embryo morpho kinetic characteristics. RESULTS: From SARS-CoV-2 infection until oocyte retrieval, it took an average of 6.63 days. The results revealed that the number of oocytes and high-quality embryos on day 3 dramatically reduced in SARS-CoV-2-infected infertile patients. SARS-CoV-2 was detected in the follicular fluid of three infertile patients. SARS-CoV-2 infection had negatively impacted the number of oocytes in multivariate linear regression models. The early embryonic development in the SARS-CoV-2 infection group had a noticeable delay from the six-cell stage to blastocyst stage. CONCLUSIONS: SARS-CoV-2 infection reduced the number of oocytes and high-quality embryos on day 3. It delays the early embryonic development from the six-cell stage to blastocyst stage and has a negative impact on the quality of embryos.


Subject(s)
COVID-19 , Infertility , Female , Pregnancy , Humans , SARS-CoV-2 , Pandemics , Oocytes , Embryonic Development
6.
BMC Mol Cell Biol ; 25(1): 10, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38523262

ABSTRACT

BACKGROUND: OP9 mouse stromal cell line has been widely used to induce differentiation of human embryonic stem cells (hESCs) into hematopoietic stem/progenitor cells (HSPCs). However, the whole co-culture procedure usually needs 14-18 days, including preparing OP9 cells at least 4 days. Therefore, the inefficient differentiation system is not appreciated. We aimed to optimize the culture conditions to improve differentiation efficiency. METHODS: In the experimental group, we set six different densities of OP9 cells and just cultured them for 24 h before co-culture, and in the control group, OP9 cells were cultured for 4 days to reach an overgrown state before co-culture. Then we compared the hematopoietic differentiation efficiency among them. RESULTS: OP9 cells were randomly assigned into two groups. In the experimental group, six different plated numbers of OP9 cells were cultured for 1 day before co-culture with hESCs. In contrast, in the control group, OP9 cells were cultured for 4 days at a total number of 3.1 × 104 cells/cm2 in a 6-well plate to reach an overgrown state before co-culture. Hematopoietic differentiation was evaluated with CD34 immunostaining, and compared between these two groups. We could not influence the differentiation efficiency of OP9 cells with a total number of 10.4 × 104 cells/cm2 in a 6-well plate which was cultured just for 1 day, followed by co-culture with hESCs. It reached the same differentiation efficiency 5 days earlier than the control group. CONCLUSION: The peak of CD34 + cells appeared 2 days earlier compared to the control group. A total number of 1.0 × 106 cells in a 6-well plate for OP9 cells was appropriate to have high differentiation efficiency.


Subject(s)
Hematopoietic Stem Cells , Stromal Cells , Animals , Mice , Humans , Stromal Cells/metabolism , Cell Differentiation , Coculture Techniques , Cells, Cultured
7.
Reprod Sci ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273122

ABSTRACT

This study aimed to investigate the effect of cyclosporine A (CsA) on secretion of Th1 and Th2 cytokines by decidual stromal cells (DSCs) mediated by galectin (Gal)-9.HTR8/SVneo cells and primary trophoblasts were used for in vitro studies. Gal-9 expression was measured using quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, CsA was used to regulate Gal-9 expression in trophoblasts. DSCs were treated with trophoblast supernatant and changes in Th1 and Th2 cytokine levels were analyzed. Changes in DSC levels of the T-cell immunoglobulin mucin receptor 3 (TIM-3) levels in DSCs after treatment with Gal-9 were assessed. Western blotting and ERK and AKT inhibitors were used to assess the involvement of the corresponding signaling pathways. Gal-9 was expressed by both primary trophoblasts and HTR8/SVneo cells. CsA treatment increased Gal-9 secretion by trophoblasts, which in turn increased IL-6 (Th2 cytokine) and decreased TNF-α and IFN-γ (Th1 cytokines) secretion in DSCs. Upon downregulation of trophoblast Gal-9 secretion, DSCs secreted lower levels of Th2 cytokines and higher levels of Th1 cytokines, and the effect was reversed by addition of CsA. TIM-3 expression changed in parallel with Gal-9 secretion. CsA treatment upregulated expression of Gal-9 in trophoblasts, promoted secretion of Th2 cytokines, and inhibited secretion of Th1 cytokines via ERK signaling.

8.
Zygote ; 32(1): 71-76, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38124629

ABSTRACT

During the early stages of human pregnancy, successful implantation of embryonic trophoblast cells into the endometrium depends on good communication between trophoblast cells and the endometrium. Abnormal trophoblast cell function can cause embryo implantation failure. In this study, we added cyclosporine A (CsA) to the culture medium to observe the effect of CsA on embryonic trophoblast cells and the related mechanism. We observed that CsA promoted the migration and invasion of embryonic trophoblast cells. CsA promoted the expression of leukaemic inhibitory factor (LIF) and fibroblast growth factor (FGF). In addition, CsA promoted the secretion and volume increase in vesicles in the CsA-treated group compared with the control group. Therefore, CsA may promote the adhesion and invasion of trophoblast cells through LIF and FGF and promote the vesicle dynamic process, which is conducive to embryo implantation.


Subject(s)
Fibroblast Growth Factors , Trophoblasts , Pregnancy , Female , Humans , Fibroblast Growth Factors/metabolism , Blastocyst , Embryo Implantation , Endometrium/metabolism
9.
Reprod Sci ; 31(5): 1268-1277, 2024 May.
Article in English | MEDLINE | ID: mdl-38110819

ABSTRACT

Pre-eclampsia (PE) is thought to be related to placental dysfunction, particularly poor extravillous trophoblast (EVT) invasion and migration abilities. However, the pathogenic mechanism is not fully understood. This article describes the impact of the cyclic adenosine monophosphate(cAMP) signaling pathway on EVT behavior, focusing on EVT proliferation, invasion, and migration. Here, we used the HTR8/SV-neo cell line to study human EVT function in vitro. HTR8/SV-neo cells were treated with different concentrations of forskolin (cAMP pathway-specific agonist) to alter intracellular cAMP levels, and dimethyl sulfoxide (DMSO) was used as the control. First, a cAMP assay was performed to measure the cAMP concentration in HTR8/SV-neo cells treated with different forskolin concentrations, and cell proliferation was assessed by constructing cell growth curves and assessing colony formation. Cell invasion and migration were observed by Transwell experiments, and intracellular epithelial-mesenchymal transition (EMT) marker expression was evaluated by quantitative real-time polymerase chain reaction (qPCR) and Western blotting (WB). According to our research, the intracellular cAMP levels in HTR8/SV-neo cells were increased in a dose-dependent manner, and HTR8/SV-neo cell proliferation, invasion and migration were significantly enhanced. The expression of EMT and angiogenesis markers was upregulated. Additionally, with the increase in intracellular cAMP levels, the phosphorylation of intracellular mitogen-activated protein kinase (MAPK) signaling pathway components was significantly increased. These results suggested that the cAMP signaling pathway promoted the phosphorylation of MAPK signaling components, thus enhancing EVT functions, including proliferation, invasion, and migration, and to a certain extent, providing a novel direction for the treatment of PE patients.


Subject(s)
Cell Movement , Cell Proliferation , Colforsin , Cyclic AMP , Signal Transduction , Trophoblasts , Humans , Cell Movement/drug effects , Colforsin/pharmacology , Cell Proliferation/drug effects , Cyclic AMP/metabolism , Trophoblasts/metabolism , Trophoblasts/drug effects , Signal Transduction/drug effects , Cell Line , Female , Pregnancy , Epithelial-Mesenchymal Transition/drug effects , Pre-Eclampsia/metabolism , Pre-Eclampsia/drug therapy , Pre-Eclampsia/pathology
10.
BMC Pregnancy Childbirth ; 23(1): 824, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38031033

ABSTRACT

OBJECTIVE: This study assessed the impacts of in vitro culture times of cleavage embryos on clinical pregnancy outcomes. METHODS: This retrospective cohort study was performed at the Reproductive Medicine Department of Hainan Modern Women and Children's Hospital in China between January 2018 and December 2022. Patients who first underwent frozen embryo transfer with in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) cycles on day 3 were included. According to the time of embryo culture after thawing, the embryos were divided into long-term culture group(18-20 h) and short-term culture group (2-4 h). The clinical pregnancy rate was regarded as he primary outcome. To minimize confounding factors and reduce selection bias, the propensity score matching was used to balance the effects of known confounding factors and to reduce selection bias. Stratified analyses and multiple logistic regression analyses were used to evaluate the risk factors affecting the clinical pregnancy outcomes after matching. RESULTS: General characteristics between two groups were comparable after matching. In the long-term culture group, 266/381 (69.81%) embryos had more than 10 blastomeres, and 75/381 (19.68%) reached the morula stage. After overnight culture, the implantation rate (27.97% vs. 14.28%, P = 0.018) and clinical pregnancy rate (38.46% vs. 22.5%, P = 0.05) were increased in the group with proliferating blastomeres. The long-term culture group trended to have a higher clinical pregnancy rate compared with the short-term culture group (35.74% vs. 29.79%). No statistical differences in clinical pregnancy outcomes between the two groups were observed after matching, including the rates of implantation (25.46% vs23.98%), miscarriages (25% vs. 22.85%), ongoing pregnancy rate (76.2% vs. 77.15%) and live birth rate (26.8% vs. 22.98%). Stratified analyses were performed according to the age of the patients. After matching, there were no significant differences in the clinical pregnancy, implantation and miscarriage rates between the two groups for patients > 35 or ≤ 35 years of age. Subgroup analyses were performed according to the quality of the transferred embryos. There were no significant differences in the clinical outcomes, between two groups after embryos transferred with the same quality. Multivariate Logistic regression analysis was used to evaluate the influencing factors of clinical pregnancy outcomes after matching. Culture time was not found to be an independent predictor for clinical pregnancy [OR 0.742, 95%CI 0.487 ~ 1.13; P = 0.165]. The age of oocyte retrieval [OR 0.906, 95%CI 0.865 ~ 0.949; P <0.001] and the number of high-quality embryos transferred [OR 1.787, 95%CI 1.256 ~ 2.543; P = 0.001] were independent factors affecting clinical pregnancy outcomes. CONCLUSIONS: In vitro 18-20 h culture of embryos with either good-or non-good-quality will not adversely affect the clinical pregnancy.


Subject(s)
Abortion, Spontaneous , Pregnancy Outcome , Pregnancy , Child , Humans , Male , Female , Pregnancy Outcome/epidemiology , Retrospective Studies , Semen , Fertilization in Vitro , Embryo Transfer/adverse effects , Pregnancy Rate , Abortion, Spontaneous/etiology
11.
J Exp Clin Cancer Res ; 42(1): 268, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37845756

ABSTRACT

BACKGROUND: Dysregulated epithelial-mesenchymal transition (EMT) is involved in cervical cancer metastasis and associated with histone acetylation. However, the underlying molecular mechanisms of histone acetylation in cervical cancer EMT and metastasis are still elusive. METHODS: We systematically investigated the expression patterns of histone acetylation genes and their correlations with the EMT pathway in cervical cancer. The expression of CSRP2BP among cervical cancer tissues and cell lines was detected using Western blotting and immunohistochemistry analyses. The effects of CSRP2BP on cervical cancer cell proliferation and tumorigenicity were examined by cell growth curve, EdU assay, flow cytometry and xenotransplantation assays. Wound healing assays, transwell migration assays and pulmonary metastasis model were used to evaluate the effects of CSRP2BP on cell invasion and metastasis of cervical cancer cells in vivo and in vitro. RNA-seq, chromatin immunoprecipitation (ChIP), co-immunoprecipitation (Co-IP) and luciferase reporter assays were used to uncover the molecular mechanisms of CSRP2BP in promoting cervical cancer EMT and metastasis. RESULTS: We prioritized a top candidate histone acetyltransferase, CSRP2BP, as a key player in cervical cancer EMT and metastasis. The expression of CSRP2BP was significantly increased in cervical cancer tissues and high CSRP2BP expression was associated with poor prognosis. Overexpression of CSRP2BP promoted cervical cancer cell proliferation and metastasis both in vitro and in vivo, while knockdown of CSRP2BP obtained the opposite effects. In addition, CSRP2BP promoted resistance to cisplatin chemotherapy. Mechanistically, CSRP2BP mediated histone 4 acetylation at lysine sites 5 and 12, cooperated with the transcription factor SMAD4 to bind to the SEB2 sequence in the N-cadherin gene promotor and upregulated N-cadherin transcription. Consequently, CSRP2BP promoted cervical cancer cell EMT and metastasis through activating N-cadherin. CONCLUSIONS: This study demonstrates that the histone acetyltransferase CSRP2BP promotes cervical cancer metastasis partially through increasing the EMT and suggests that CSRP2BP could be a prognostic marker and a potential therapeutic target for combating cervical cancer metastasis.


Subject(s)
Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Cadherins/genetics , Cadherins/metabolism , Epithelial-Mesenchymal Transition/genetics , Histones/metabolism , Cell Movement/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Proliferation , Neoplasm Metastasis
12.
J Trace Elem Med Biol ; 80: 127288, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37659123

ABSTRACT

This investigation was designed to examine the potential involvement of RAGE/NADPH oxidase signaling in the damage to the brain caused by chronic fluorosis. Sprague-Dawley rats were divided randomly into 9 groups each containing 20 animals, Controls (C); rats receiving low (i.e., 10 ppm) (LF) or high does ( i.e., 50 ppm) (HF) of fluoride in their drinking water; and these same groups injected with FPS-ZM1, an inhibitor of RAGE, (CF, LFF and HFF, respectively) or administered EGb761, an active ingredient of Ginkgo biloba extract, intragastrically (CE, LFE, and HFE). Following 3 and 6 months of such treatment, the spatial learning and memory of the animals were assessed with the Morris water maze test; the levels of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide dismutase (SOD) assayed by biochemical methods; and the levels of proteins related to the RAGE/NADPH pathway determined by Western blot and of the corresponding mRNAs by qPCR. After 6 months, the spatial learning and memory of the LF and HF groups had declined; their brain contents of MDA and H2O2 increased and SOD activity decreased; and the levels of the RAGE, gp91, P47, phospho-P47phox and P22 proteins and corresponding mRNAs in their brains were all elevated. Interestingly, all of these pathological changes caused by fluorosis could be attenuated by both FPS-ZM1 and EGb761. These findings indicate that the brain damage induced by fluorosis may be caused, at least in part, by enhanced RAGE/NADPH oxidase signaling and that FPS-ZM1 or EGb761 might be of clinical value in connection with the treatment of this condition.


Subject(s)
Brain , Hydrogen Peroxide , Rats , Animals , Rats, Sprague-Dawley , Hydrogen Peroxide/metabolism , Brain/metabolism , Oxidative Stress , NADPH Oxidases , Signal Transduction , Superoxide Dismutase/metabolism
13.
Nat Commun ; 14(1): 5354, 2023 09 02.
Article in English | MEDLINE | ID: mdl-37660175

ABSTRACT

Understanding pancreas development can provide clues for better treatments of pancreatic diseases. However, the molecular heterogeneity and developmental trajectory of the early human pancreas are poorly explored. Here, we performed large-scale single-cell RNA sequencing and single-cell assay for transposase accessible chromatin sequencing of human embryonic pancreas tissue obtained from first-trimester embryos. We unraveled the molecular heterogeneity, developmental trajectories and regulatory networks of the major cell types. The results reveal that dorsal pancreatic multipotent cells in humans exhibit different gene expression patterns than ventral multipotent cells. Pancreato-biliary progenitors that generate ventral multipotent cells in humans were identified. Notch and MAPK signals from mesenchymal cells regulate the differentiation of multipotent cells into trunk and duct cells. Notably, we identified endocrine progenitor subclusters with different differentiation potentials. Although the developmental trajectories are largely conserved between humans and mice, some distinct gene expression patterns have also been identified. Overall, we provide a comprehensive landscape of early human pancreas development to understand its lineage transitions and molecular complexity.


Subject(s)
Mesenchymal Stem Cells , Pancreas , Humans , Animals , Mice , Biological Assay , Cell Differentiation , Chromatin
14.
Plant Cell Environ ; 46(11): 3558-3574, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37545348

ABSTRACT

Adequate distribution of mineral sulphur (S) nutrition to nodules mediated by sulphate transporters is crucial for nitrogen fixation in symbiosis establishment process. However, the molecular mechanisms underlying this process remain largely unknown. In this study, we characterized the function of Early Senescent Nodule 2 (MtESN2), a gene crucial to nitrogen fixation in Medicago truncatula. Mutations in MtESN2 resulted in severe developmental and functional defects including dwarf shoots, early senescent nodules, and lower nitrogenase activity under symbiotic conditions compared to wild-type plants. MtESN2 encodes an M. truncatula sulphate transporter that is expressed only in roots and nodules, with the highest expression levels in the transition zone and nitrogen-fixing zone of nodules. MtESN2 exhibited sulphate transport activity when expressed in yeast. Immunolocalization analysis showed that MtESN2-yellow fluorescent protein fusion protein was localized to the plasma membranes of both uninfected and infected cells of nodules, where it might transport sulphate into both rhizobia-infected and uninfected cells within the nodules. Our results reveal an unreported sulphate transporter that contributes to effective symbiosis and prevents nodule early senescence in M. truncatula.


Subject(s)
Medicago truncatula , Nitrogen Fixation , Nitrogen Fixation/genetics , Root Nodules, Plant/metabolism , Medicago truncatula/genetics , Medicago truncatula/metabolism , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Symbiosis/genetics , Sulfates/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
15.
Brief Funct Genomics ; 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37288496

ABSTRACT

Ion channels, in particular transient-receptor potential (TRP) channels, are essential genes that play important roles in many physiological processes. Emerging evidence has demonstrated that TRP genes are involved in a number of diseases, including various cancer types. However, we still lack knowledge about the expression alterations landscape of TRP genes across cancer types. In this review, we comprehensively reviewed and summarised the transcriptomes from more than 10 000 samples in 33 cancer types. We found that TRP genes were widespreadly transcriptomic dysregulated in cancer, which was associated with clinical survival of cancer patients. Perturbations of TRP genes were associated with a number of cancer pathways across cancer types. Moreover, we reviewed the functions of TRP family gene alterations in a number of diseases reported in recent studies. Taken together, our study comprehensively reviewed TRP genes with extensive transcriptomic alterations and their functions will directly contribute to cancer therapy and precision medicine.

16.
Ann Am Thorac Soc ; 20(8): 1124-1135, 2023 08.
Article in English | MEDLINE | ID: mdl-37351609

ABSTRACT

Rationale: Chronic obstructive pulmonary disease (COPD) is a complex disease characterized by airway obstruction and accelerated lung function decline. Our understanding of systemic protein biomarkers associated with COPD remains incomplete. Objectives: To determine what proteins and pathways are associated with impaired pulmonary function in a diverse population. Methods: We studied 6,722 participants across six cohort studies with both aptamer-based proteomic and spirometry data (4,566 predominantly White participants in a discovery analysis and 2,156 African American cohort participants in a validation). In linear regression models, we examined protein associations with baseline forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity (FVC). In linear mixed effects models, we investigated the associations of baseline protein levels with rate of FEV1 decline (ml/yr) in 2,777 participants with up to 7 years of follow-up spirometry. Results: We identified 254 proteins associated with FEV1 in our discovery analyses, with 80 proteins validated in the Jackson Heart Study. Novel validated protein associations include kallistatin serine protease inhibitor, growth differentiation factor 2, and tumor necrosis factor-like weak inducer of apoptosis (discovery ß = 0.0561, Q = 4.05 × 10-10; ß = 0.0421, Q = 1.12 × 10-3; and ß = 0.0358, Q = 1.67 × 10-3, respectively). In longitudinal analyses within cohorts with follow-up spirometry, we identified 15 proteins associated with FEV1 decline (Q < 0.05), including elafin leukocyte elastase inhibitor and mucin-associated TFF2 (trefoil factor 2; ß = -4.3 ml/yr, Q = 0.049; ß = -6.1 ml/yr, Q = 0.032, respectively). Pathways and processes highlighted by our study include aberrant extracellular matrix remodeling, enhanced innate immune response, dysregulation of angiogenesis, and coagulation. Conclusions: In this study, we identify and validate novel biomarkers and pathways associated with lung function traits in a racially diverse population. In addition, we identify novel protein markers associated with FEV1 decline. Several protein findings are supported by previously reported genetic signals, highlighting the plausibility of certain biologic pathways. These novel proteins might represent markers for risk stratification, as well as novel molecular targets for treatment of COPD.


Subject(s)
Lung , Pulmonary Disease, Chronic Obstructive , Humans , Forced Expiratory Volume/physiology , Proteomics , Vital Capacity/physiology , Spirometry , Biomarkers
17.
Cell Res ; 33(6): 421-433, 2023 06.
Article in English | MEDLINE | ID: mdl-37085732

ABSTRACT

The lung is the primary respiratory organ in human, in which the proximal airway and the distal alveoli are responsible for air conduction and gas exchange, respectively. However, the regulation of proximal-distal patterning at the embryonic stage of human lung development is largely unknown. Here we investigated the early lung development of human embryos at weeks 4-8 post fertilization (Carnegie stages 12-21) using single-cell RNA sequencing, and obtained a transcriptomic atlas of 169,686 cells. We observed discernible gene expression patterns of proximal and distal epithelia at week 4, upon the initiation of lung organogenesis. Moreover, we identified novel transcriptional regulators of the patterning of proximal (e.g., THRB and EGR3) and distal (e.g., ETV1 and SOX6) epithelia. Further dissection revealed various stromal cell populations, including an early-embryonic BDNF+ population, providing a proximal-distal patterning niche with spatial specificity. In addition, we elucidated the cell fate bifurcation and maturation of airway and vascular smooth muscle progenitor cells at the early stage of lung development. Together, our study expands the scope of human lung developmental biology at early embryonic stages. The discovery of intrinsic transcriptional regulators and novel niche providers deepens the understanding of epithelial proximal-distal patterning in human lung development, opening up new avenues for regenerative medicine.


Subject(s)
Lung , Pulmonary Alveoli , Humans , Lung/metabolism , Cell Differentiation/genetics , Embryo, Mammalian , Sequence Analysis, RNA
18.
Front Cell Infect Microbiol ; 13: 1079774, 2023.
Article in English | MEDLINE | ID: mdl-36743311

ABSTRACT

Miliary tubersculosis (TB), an acute systemic blood disseminated tuberculosis mainly caused by Mycobacterium tuberculosis (M. tuberculosis), can cause signs of lymphopenia in clinical patients. To investigate whether/how persistent mycobacteria antigen stimulation impairs hematopoiesis and the therapeutic effect of interleukin-7 (IL-7), a mouse model of Mycobacterium Bovis Bacillus Calmette-Guérin (BCG) intravenous infection with/without an additional stimulation with M. tuberculosis multi-antigen cocktail containing ESAT6-CFP10 (EC) and Mtb10.4-HspX (MH) was established. Consistent with what happened in miliary TB, high dose of BCG intravenous infection with/without additional antigen stimulation caused lymphopenia in peripheral blood. In which, the levels of cytokines IFN-γ and TNF-α in serum increased, and consequently the expression levels of transcription factors Batf2 and IRF8 involved in myeloid differentiation were up-regulated, while the expression levels of transcription factors GATA2 and NOTCH1 involved in lymphoid commitment were down-regulated, and the proliferating activity of bone marrow (BM) lineage- c-Kit+ (LK) cells decreased. Furthermore, recombinant Adeno-Associated Virus 2-mediated IL-7 (rAAV2-IL-7) treatment could significantly promote the elevation of BM lymphoid progenitors. It suggests that persistent mycobacteria antigen stimulation impaired lymphopoiesis of BM hematopoiesis, which could be restored by complement of IL-7.


Subject(s)
Lymphopenia , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Animals , Mice , Antigens, Bacterial , Interleukin-7 , BCG Vaccine , Transcription Factors , Hematopoiesis
19.
Neoplasma ; 70(1): 46-57, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36620877

ABSTRACT

Non-small cell lung cancer (NSCLC) is characterized by high incidence and mortality, severely threatening human health. The infinite growth and metastasis of NSCLC cells result in a poor prognosis. Therefore, our study was to investigate the mechanism of Sestrin2 on the epithelial-mesenchymal transition (EMT) process of NSCLC cells. Human embryonic lung fibroblasts, NSCLC cell lines, and nude mice were experimental subjects in this study. qRT-PCR and western blot were performed to evaluate the mRNA and protein expression of genes. CCK-8 and EdU assay were conducted to detect cell proliferation. The scratch test and Transwell assay were applied to examine cell migration and invasion. The bioinformatics analysis and Co-IP assay were employed to predict and consolidate the interaction between YAP and TEAD. We found the expression of Sestrin2 was declined but the expression of YAP was elevated in NSCLC cells. Sestrin2 sufficiency or YAP silencing could effectively impair cell growth and metastasis. Mechanistically, YAP interacted with TEAD to enhance FOXM1 expression. Additionally, the elevation of FOXM1 abolished the inhibitory influences of Sestrin2 sufficiency on NSCLC cell growth, invasion, and EMT process. Eventually, Sestrin2 elevation attenuated tumor growth in mice via modulation of the AMPK/YAP/FOXM1 axis, which was reversed by FOXM1 overexpression. Our consequences suggested Sestrin2 could inhibit the activation of YAP via prompting AMPK phosphorylation and then suppress FOXM1 expression through the interplay between YAP and TEAD to impair the capacities of NSCLC cell proliferation, migration, invasion, and EMT. This study provided a novel mechanism of Sestrin2 in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Mice , AMP-Activated Protein Kinases/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Forkhead Box Protein M1/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/pathology , Mice, Nude
20.
Commun Biol ; 6(1): 82, 2023 01 21.
Article in English | MEDLINE | ID: mdl-36681772

ABSTRACT

RNA-binding proteins (RBPs) are key players of gene expression and perturbations of RBP-RNA regulatory network have been observed in various cancer types. Here, we propose a computational method, RBPreg, to identify the RBP regulators by integration of single cell RNA-Seq (N = 233,591) and RBP binding data. Pan-cancer analyses suggest that RBP regulators exhibit cancer and cell specificity and perturbations of RBP regulatory network are involved in cancer hallmark-related functions. We prioritize an oncogenic RBP-HNRNPK, which is highly expressed in tumors and associated with poor prognosis of patients. Functional assays performed in cancer cells reveal that HNRNPK promotes cancer cell proliferation, migration, and invasion in vitro and in vivo. Mechanistic investigations further demonstrate that HNRNPK promotes tumorigenesis and progression by directly binding to MYC and perturbed the MYC targets pathway in lung cancer. Our results provide a valuable resource for characterizing RBP regulatory networks in cancer, yielding potential biomarkers for precision medicine.


Subject(s)
Lung Neoplasms , RNA , Humans , RNA/genetics , Carcinogenesis , Cell Transformation, Neoplastic , Heterogeneous-Nuclear Ribonucleoprotein K/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...