Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 240
Filter
1.
Leuk Lymphoma ; : 1-8, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814179

ABSTRACT

This study explored the impact of different maintenance therapies on survival outcomes in patients with multiple myeloma (MM), focusing on changes in minimal residual disease (MRD) during maintenance. Conducted at a single center, this retrospective study included 259 newly diagnosed MM patients who did not undergo autologous stem cell transplantation (ASCT). The results indicated that patients receiving lenalidomide as maintenance therapy showed significantly better progression-free survival (PFS) and overall survival (OS) compared to those treated with bortezomib or no maintenance therapy. However, bortezomib proved more effective in high-risk MM cases. Patients who were MRD-negative prior to starting maintenance therapy had a better prognosis than MRD-positive patients. Notably, lenalidomide was the most effective regimen irrespective of MRD status. Patients maintaining or achieving MRD-negativity within the first year of lenalidomide treatment exhibited improved prognoses, confirming lenalidomide as the optimal maintenance choice.

2.
Cancer Med ; 13(9): e7177, 2024 May.
Article in English | MEDLINE | ID: mdl-38686615

ABSTRACT

OBJECTIVE: To evaluate the effectiveness, safety, and convenience of in-class transition (iCT) from intravenous bortezomib-based induction to ixazomib-based oral regimens. METHODS: This retrospective real-world study was conducted in 16 Chinese hospitals between October 2017 and April 2023 and analyzed newly diagnosed (NDMM) and first-line relapsed multiple myeloma (FRMM) patients who attained at least a partial response from bortezomib-based induction therapy, followed by an ixazomib-based oral regimen for 2 year or until disease progression or intolerable toxicity. RESULTS: The study enrolled 199 patients, median age: 63 years old, male 55.4%, 53% as high risk (HR), and 47% as standard risk. Cytogenetic risk stratification by metaphase fluorescence in situ hybridization (M-FISH), based on the Mayo Clinic risk stratification system. The median duration of total PI therapy was 11 months, with ixazomib-based treatment spanning 6 months. At the 20-month median follow-up, 53% of patients remained on therapy. The 24-month PFS rate was 84.3% from the initiation of bortezomib-based induction and 83.4% from the start of ixazomib-based treatment. Overall response rate (ORR) was 100% post-bortezomib induction and 90% following 6 cycles of the ixazomib-based regimen. Based on the Sankey diagrams, 89.51% of patients maintained or improved their disease response after 2 cycles of iCT, 6 cycles (90.14%), and 12 cycles (80%). The HR level of Mayo was found to be a significant independent factor in a worse remission (hazard ratio (HR) 2.55; p = 0.033). Ixazomib's safety profile aligned with previous clinical trial data, with 49% of patients experiencing at least one AE of any grade. The most common AEs included peripheral neuropathy, nausea and vomiting, diarrhea, thrombocytopenia, and granulocytopenia. CONCLUSION: In the real-world Chinese MM population, NDMM and FRMM patients responded favorably to PI-based continuous therapy, demonstrating substantial response rates. The ixazomib-based iCT allows for sustained PI-based treatment, offering promising efficacy and tolerable AEs.


Subject(s)
Boron Compounds , Bortezomib , Glycine , Glycine/analogs & derivatives , Multiple Myeloma , Proteasome Inhibitors , Humans , Boron Compounds/administration & dosage , Boron Compounds/therapeutic use , Boron Compounds/adverse effects , Male , Glycine/administration & dosage , Glycine/therapeutic use , Glycine/adverse effects , Multiple Myeloma/drug therapy , Middle Aged , Female , Aged , Retrospective Studies , Proteasome Inhibitors/therapeutic use , Proteasome Inhibitors/administration & dosage , Proteasome Inhibitors/adverse effects , Bortezomib/administration & dosage , Bortezomib/therapeutic use , Bortezomib/adverse effects , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Administration, Oral , China , Aged, 80 and over
3.
Sci Total Environ ; 919: 170770, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38340823

ABSTRACT

Antibiotic resistance genes (ARGs) may be synergistic selected during bio-treatment of chromium-containing wastewater and causing environmental risks through horizontal transfer. This research explored the impact of self-screening bacterium Acinetobacter sp. SL-1 on the treatment of chromium-containing wastewater under varying environmental conditions. The findings indicated that the optimal Cr(VI) removal conditions were an anaerobic environment, 30 °C temperature, 5 g/L waste molasses, 100 mg/L Cr(VI), pH = 7, and a reaction time of 168 h. Under these conditions, the removal of Cr(VI) reached 99.10 %, however, it also developed cross-resistance to tetracycline, gentamicin, clarithromycin, ofloxacin following exposure to Cr(VI). When decrease Cr(VI) concentration to 50 mg/L at pH of 9 with waste molasses as carbon source, the expression of ARGs was down regulated, which decreased the horizontal transfer possibility of ARGs and minimized the potential environmental pollution risk caused by ARGs. The study ultimately emphasized that the treatment of chromium-containing wastewater with waste molasses in conjunction with SL-1 not only effectively eliminates hexavalent chromium but also mitigates the risk of environmental pollution.


Subject(s)
Acinetobacter , Catechols , Wastewater , Anti-Bacterial Agents/metabolism , Molasses , Carbon/metabolism , Acinetobacter/metabolism , Chromium/metabolism , Drug Resistance, Microbial , Biodegradation, Environmental
4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 138-145, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38387912

ABSTRACT

OBJECTIVE: To investigate the mechanism and clinical value of nicotinamide phosphoribosyltransferase (NAMPT) in multiple myeloma (MM). METHODS: RT-qPCR and Western blot were used to detect the expression of NAMPT in MM cells and normal bone marrow mononuclear cells. The biological function of NAMPT was analyzed by cell proliferation and apoptosis assay, small interfering RNA silencing, overexpression assay and chromatin immunoprecipitation assay. RESULTS: The mRNA and protein expression levels of NAMPT in MM cell lines (MM1R, MM1S, U266 and RPMI-8226) were significantly higher than those in normal bone marrow mononuclear cells (P < 0.001), and were most obvious in U266 cells. Compared with Si-NC group, the proliferation of U266 cells in Si-NAMPT group was significantly inhibited at 24, 48 and 72 h after transfection (P =0.006, P < 0.001, P =0.001), and the apoptosis rate of U266 cells was significantly increased at 48 h after transfection (P < 0.001). Compared with Flag-NC group, U266 cell proliferation in Flag-NAMPT group was significantly increased (P =0.003, P =0.002, P < 0.001), while the apoptosis rate decreased significantly at 48 h after transfection. The expression of NAMPT in U266 cells was regulated by XBP1 at transcriptional level. The proliferation rate of U266 cells with XBP1 or NAMPT stable knockout or MKC3946 pretreated with bortezomib was significantly decreased, the levels of BCL-2 mRNA and protein were also significantly decreased, while the levels of BAX mRNA and protein were significantly increased, moreover, the cleavage degree of caspase-3 significantly decreased, while caspase-3/7 activity increased dramatically (P < 0.05). CONCLUSIONS: The high expression of NAMPT in MM cell line can promote MM cell proliferation and inhibit apoptosis. NAMPT is regulated by IRE1α-XBP1 signaling pathway in U266 cells. Stable knockdown of NAMPT or blocking of IRE1α-XBP1 pathway can significantly increase the sensitivity of U266 cells to bortezomib.


Subject(s)
Multiple Myeloma , Humans , Apoptosis , Bortezomib/pharmacology , Caspase 3 , Cell Line, Tumor , Cell Proliferation , Clinical Relevance , Endoribonucleases , Multiple Myeloma/genetics , Nicotinamide Phosphoribosyltransferase , Protein Serine-Threonine Kinases , RNA, Messenger/genetics
5.
Fish Physiol Biochem ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407736

ABSTRACT

Fc receptors (FcRs), specific to the Fc portion of immunoglobulin (Ig), are required to regulate immune responses against pathogenic infections. However, FcγR is a member of FcRs family, whose structure and function remains to be elucidated in teleost fish. In this study, the FcγRII, from largemouth bass (Micropterus saloumoides), named membrane MsFcγRII (mMsFcγRII), was cloned and identified. The opening reading frame (ORF) of mMsFcγRII was 750 bp, encoding 249 amino acids with a predicted molecular mass of 27 kDa. The mMsFcγRII contained a signal peptide, two Ig domains, a transmembrane domain, and an intracellular region, which was highly homology with FcγR from other teleost fish. The mRNA expression analysis showed that mMsFcγRII was widely distributed in all tested tissues and with the highest expression level in spleen. After bacterial challenge, the expression of mMsFcγRII was significantly upregulated in vivo (spleen and head kidney), as well as in vitro (leukocytes from head kidney). The subcellular localization assay revealed that mMsFcγRII was mostly observed on the membrane of HEK293T cells which were transfected with mMsFcγRII overexpression plasmid. Flow cytometric analysis showed that natural mMsFcγRII protein was highly expressed in head kidney lymphocytes. Moreover, indirect immunofluorescence assay and pull-down assay indicated that mMsFcγRII could bind to IgM purified from largemouth bass serum. These results suggested that mMsFcγRII was likely to play an influential role in the immune response against pathogens and provided valuable insights for studying the function of FcRs in teleost.

6.
RSC Adv ; 14(10): 7052-7060, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38414986

ABSTRACT

Li2O-Al2O3-SiO2 (LAS) glass ceramics have a low coefficient of thermal expansion, high mechanical strength, and excellent chemical stability. With advancements in glass ceramics, researchers have explored using LAS glass ceramics with transition metal doping and rare earth doping. Most previous studies have studied the impact of rare earth element doping on crystallization primarily in the context of conventional nucleating agents present in glass. In this study, we aimed to investigate the impact of Y2O3 and La2O3 on LAS glasses in the presence of undoped nucleating agents. The crystallization mechanism of La2O3 and Y2O3 doped LAS glass ceramics was studied using differential scanning calorimetry. The crystallization kinetics of the glasses were analyzed using model-free and modeling methods. Moreover, the activation energy of crystallization and the indices of crystallization and growth of glass ceramics were calculated, and the crystalline phase and microstructure of the samples were characterized. All three fractions of the LAS glass showed consistent crystallization under different calculation methods. The glass doped with La2O3 and Y2O3 exhibited two- or three-dimensional growth during crystallization, promoting crystallization in the LAS glass. The Y3La0 sample demonstrated the most favorable crystallization effect. In the presence of an undoped nucleating agent, rare earth elements can enhance glass crystallization; this new idea can be utilized for the development of new materials.

7.
bioRxiv ; 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38410462

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 is a lytic RNA-binding protein. We applied BCBL-1 cells in lytic KSHV infection and performed UV cross-linking immunoprecipitation (CLIP) followed by RNA-seq of the CLIPed RNA fragments (CLIP-seq). We identified ORF57-bound transcripts from 544 host protein-coding genes. By comparing with the RNA-seq profiles from BCBL-1 cells with latent and lytic KSHV infection and from HEK293T cells with and without ORF57 expression, we identified FOS and CITED2 RNAs being two common ORF57-specific RNA targets. FOS dimerizes with JUN as a transcription factor AP-1 involved in cell proliferation, differentiation, and transformation. Knockout of the ORF57 gene from the KSHV genome led BAC16-iSLK cells incapable of FOS expression in KSHV lytic infection. The dysfunctional KSHV genome in FOS expression could be rescued by Lenti-ORF57 virus infection. ORF57 protein does not regulate FOS translation but binds to the 13-nt RNA motif near the FOS RNA 5' end and prolongs FOS mRNA half-life 7.7 times longer than it is in the absence of ORF57. This binding of ORF57 to FOS RNA is competitive to the binding of a host nuclease AEN (also referred to as ISG20L1). KSHV infection inhibits the expression of AEN, but not exosomal RNA helicase MTR4. FOS expression mediated by ORF57 inhibits AEN transcription, but transactivates RGS2, a regulator of G-protein coupled receptors. FOS binds a conserved AP-1 site in the RGS2 promoter and enhances RGS2 expression to phosphorylate AKT. Altogether, we have discovered that KSHV ORF57 specifically binds and stabilizes FOS RNA to increase FOS expression, thereby disturbing host gene expression and inducing pathogenesis during KSHV lytic infection.

8.
Dalton Trans ; 53(2): 753-764, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38086665

ABSTRACT

In this study, a series of structurally rigid cyclooctyl-fused iminopyridine iron complexes, [L2FeCl][FeCl4] and [2L3Fe][Cl][3FeCl4], was synthesized via a one-pot method and investigated as precatalysts in conjunction with methylaluminoxane for isoprene (Ip) polymerization. Combined characterization through FTIR analysis, elemental analysis and single crystal XRD analysis fully verified the structure of these complexes. The most active iron complex, FeH, exhibited a trisligated nature, with its cation adopting an octahedral geometry around the metal center. In contrast, all the other iron complexes (Fe2Me, Fe2Et, Fe2iPr, Fe3Me, Fe2Et,Me) displayed bisligated configurations, with distorted trigonal bipyramidal geometry of cations. During isoprene polymerization, the extent of steric hindrance of the ligand framework exerted a significant impact on catalytic performance. The FeH precatalyst with less steric hindrance demonstrated excellent performance, producing high molecular weight polyisoprenes with conversions exceeding 99% for 4000 equiv. of monomer. Even at very low catalyst loadings, as low as 0.0025 mol% (Fe/Ip), the polymerization of isoprene could proceed smoothly with an exceptionally high activity of 4.0 × 106 gPI (molFe, h)-1. Moreover, this precatalyst exhibited good thermal stability, maintaining high activity levels (typically 105 gPI (molFe, h)-1) across a broad temperature range from -20 °C to 100 °C. Additionally, by adjusting steric substituents and the reaction temperature, the 1,4/3,4 regioselectivity could be modulated from 9/91 to 69/31 while maintaining a high stereoselectivity of cis-1,4 structures (cis/trans: >99/1).

10.
Ann Hematol ; 103(3): 855-868, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38112795

ABSTRACT

This multicenter, open-label, single-arm trial (ClinicalTrials.gov, NCT05236621) was conducted to confirm the efficacy and safety of generic pomalidomide plus dexamethasone in Chinese patients with relapsed or refractory multiple myeloma (RRMM). Total 79 eligible RRMM patients were planned to be included. Patients were treated with generic pomalidomide (4 mg daily on days 1-21, orally) and low-dose dexamethasone (40 mg/day on days 1, 8, 15, and 22, orally; 20 mg for patients aged > 75 years) in 28-day cycles until disease progression with a maximum treatment duration of 2 years. The primary endpoint is the overall response rate (ORR) assessed by the independent review committee per the 2016 International Myeloma Working Group guidelines. A total of 85 eligible patients were included in this study from 32 centers in China, with a median age of 62.0 (range, 39-76) years, a median prior line of therapy of 4 (range, 1-16), and 41.2% patients with high-risk cytogenetics. The ORR was 38.8% (95% confidence interval (CI), 28.44-50.01). The disease control rate was 67.1% (95% CI, 56.02-76.87), meanwhile, the median progression-free survival was 5.55 months (95% CI, 3.68-7.52). Among the treatment-related adverse events (TRAEs), infective pneumonia (17.6%) was the most frequent non-hematologic adverse event, while a decrease in neutrophil count (52.9%) was the most common grade ≥ 3 TRAE. The study results indicated that the generic pomalidomide demonstrated consistent efficacy and a safety profile similar to the branded pomalidomide when combined with low-dose dexamethasone in Chinese RRMM patients.Registration number ClinicalTrials.gov NCT05236621, retrospectively registered on February 11, 2022.


Subject(s)
Multiple Myeloma , Thalidomide/analogs & derivatives , Humans , Adult , Middle Aged , Aged , Multiple Myeloma/drug therapy , Dexamethasone , Neoplasm Recurrence, Local/drug therapy , Antineoplastic Combined Chemotherapy Protocols/adverse effects
11.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(6): 1739-1744, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38071054

ABSTRACT

OBJECTIVE: To study the expression level of nicotinamide phosphoribosyltransferase (NAMPT) in multiple myeloma (MM), its relationship with clinical indicators, prognosis and potential role. METHODS: Immunohistochemical staining was used to detect the expression of NAMPT in bone marrow biopsies of patients with newly diagnosed multiple myeloma (NDMM) and patients with iron deficiency anemia (IDA) hospitalized during the same period. According to the median expression level of NAMPT, NDMM patients were divided into high expression group and low expression group. The correlation between NAMPT expression level and clinical baseline data was analyzed, and survival analysis was performed to evaluate the relationship between NAMPT expression level and prognosis. The GSE24080 and GSE19784 datasets were used to analyze the effect of NAMPT on the prognosis. Gene set enrichment analysis (GSEA) explored the possible mechanism of NAMPT involved in MM cell function. RESULTS: The mean staining intensity of NAMPT in bone marrow tissue of 31 NDMM patients was 0.007±0.002, and that of 10 IDA patients was 0.002±0.002 (P < 0.05). The median expression level of NAMPT was 0.0041 in NDMM patients, and the mean staining intensity of high expression group and low expression group was 0.007±0.005 and 0.002±0.001, respectively (P < 0.001). There were certain differences in lactate dehydrogenase (LDH), C-reactive protein (CRP) and ISS staging between high expression group and low expression group (P < 0.001), while no significant differences in other indicators. The overall response rate (ORR) of high expression group was significantly lower than that of low expression group (P < 0.001). The median survival time of patients in high expression group was significantly shorter than that in low expression group (P =0.024). The results of bioinformatics analysis showed that the event-free survival (EFS) rate and overall survival (OS) rate of low NAMPT group were both higher than high NAMPT group (P =0.037, P =0.009), and NAMPT was an independent prognostic factor for EFS and OS (P =0.006, P =0.020). GSEA suggested that NAMPT might affect MM cell function through mTORC1 signaling pathway. CONCLUSIONS: The expression level of NAMPT in bone marrow of NDMM patients is significantly higher than that of IDA patients, and the high expression of NAMPT may be correlated with late ISS stage, and high level of LDH and CRP. Patients with high expression of NAMPT have worse response to bortezomib and survival time may be shorter. NAMPT may be involved in the occurrence and development of MM through mTORC1 signaling pathway.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/genetics , Bone Marrow/pathology , Nicotinamide Phosphoribosyltransferase , Clinical Relevance , Prognosis , Mechanistic Target of Rapamycin Complex 1
12.
Int J Oncol ; 63(6)2023 Dec.
Article in English | MEDLINE | ID: mdl-37921060

ABSTRACT

The transformation of myelodysplastic syndrome (MDS) into acute myeloid leukemia (AML) poses a significant clinical challenge. The trimethylation of H3 on lysine 27 (H3K27me3) methylase and de­methylase pathway is involved in the regulation of MDS progression. The present study investigated the functional mechanisms of the MEK/ERK and PI3K/AKT pathways in the MDS­to­AML transformation. MDS­AML mouse and SKM­1 cell models were first established and this was followed by treatment with the MEK/ERK pathway inhibitor, U0126, the PI3K/AKT pathway inhibitor, Ly294002, or their combination. H3K27me3 methylase, enhancer of zeste homolog (EZH)1, EZH2, demethylase Jumonji domain­containing protein­3 (JMJD3) and ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) and H3K27me3 protein levels were determined using western blot analysis. Cell viability, cycle distribution and proliferation were assessed using CCK­8, flow cytometry, EdU and colony formation assays. The ERK and AKT phosphorylation levels in clinical samples and established models were determined, and SKM­1 cell behaviors were assessed. The levels of H3K27me3 methylases and de­methylases and distal­less homeobox 5 (DLX5) were measured. The results revealed that the ERK and AKT phosphorylation levels were elevated in patients with MDS and MDS­AML, and in mouse models. Treatment with U0126, a MEK/ERK pathway inhibitor, and Ly294002, a PI3K/AKT pathway inhibitor, effectively suppressed ERK and AKT phosphorylation in mice with MDS­AML. It was observed that mice with MDS treated with U0126/Ly294002 exhibited reduced transformation to AML, delayed disease transformation and increased survival rates. Treatment of the SKM­1 cells with U0126/Ly294002 led to a decrease in cell viability and proliferation, and to an increase in cell cycle arrest by suppressing ERK/PI3K phosphorylation. Moreover, treatment with U0126/Ly294002 downregulated EZH2/EZH1 expression, and upregulated JMJD3/UTX expression. The effects of U0126/Ly294002 were nullified when EZH2/EZH1 was overexpressed or when JMJD3/UTX was inhibited in the SKM­1 cells. Treatment with U0126/Ly294002 also resulted in a decreased H3K27me3 protein level and H3K27me3 level in the DLX5 promoter region, leading to an increased DLX5 expression. Overall, the findings of the present study suggest that U0126/Ly294002 participates in MDS­AML transformation by modulating the levels of H3K27me3 methylases and de­methylases, and regulating DLX5 transcription and expression.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Mice , Animals , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Histones/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacology , Mitogen-Activated Protein Kinase Kinases/metabolism , Myelodysplastic Syndromes/drug therapy , Leukemia, Myeloid, Acute/drug therapy
14.
Environ Sci Pollut Res Int ; 30(60): 125877-125888, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38008844

ABSTRACT

With the shortage of high-quality raw materials and increasingly strict environmental regulations, the recovery of metals from copper slag and pyrolusite has become a research hotspot. A novel method for simultaneously extracting Mn and Fe from pyrolusite and copper slag has been proposed. Under the optimal conditions (Copper slag / Pyrolusite = 2, H2SO4 = 2 M, liquid-solid ratio = 10, T = 90 ℃, holding time = 60 min), the leaching efficiencies of Mn and Fe can reach 98.28% and 99.04%, respectively. In addition, the treated residue containing 60.04 wt% SiO2 can be used as a raw building material. Through chemical kinetics and mineralogical transformation analyses, Fe2SiO4 in copper slag decomposes to release Fe2+, which can reduce and leach Mn from pyrolusite. The unreacted shrinkage nuclear reaction model under the control of the surface chemical reaction is the most suitable model to describe the process, and when the apparent activation energy is 35.50 kJ/mol, the apparent rate equation is: [Formula: see text].


Subject(s)
Copper , Silicon Dioxide , Copper/analysis , Metals/analysis , Oxides
15.
RSC Adv ; 13(43): 29866-29878, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37842685

ABSTRACT

A series of N-(2-(diphenylphosphino)ethyl)-2-alkyl-5,6,7,8-tetrahydroquinolin-8-amines was prepared and used in individually reacting with iron chloride under nitrogen atmosphere to form their iron(ii) complexes Fe1-Fe6. All compounds were characterized using FT-IR spectroscopy and elemental analyses, the organic compounds were confirmed with NMR measurements, and the iron complexes were submitted to single-crystal X-ray diffraction, revealing Fe1, Fe2, Fe4, Fe5, and Fe6 as either mono- or di-nuclear forms. Forming a binary system in situ with two equivalents of LiCH2SiMe3, all iron complexes Fe1-Fe6 efficiently initiated the ring opening polymerization of ε-caprolactone, achieving the TOF up to 8.8 × 103 h-1. More importantly, the resultant polycaprolactone (PCL) possessed high molecular weights with the Mn range of 9.21-24.3 × 104 g mol-1, being a rare case of the iron(ii) catalyst in producing PCL with such high molecular weight. The 1H NMR and MALDI-TOF investigations demonstrated that the PCLs were linear features capped with a methoxy group or CH2SiMe3 or cyclic structure that varied with the molar ratio of [ε-CL]/Fe.

16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1584-1587, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37846721

ABSTRACT

Multiple myeloma (MM) is a common plasma cell malignancy, accounting for the second largest hematological malignancy. Proteasome inhibitors represented by bortezomib (BTZ) have been the main treatment for patients with newly diagnosed and relapsed or refractory myeloma in nearly two decades. Although BTZ has improved the prognosis of MM patients, MM remains incurable in most patients, mainly because MM cells become resistant to BTZ. This review is to better understand the mechanism of MM resistance to BTZ and explore possible new therapeutic strategies.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Humans , Bortezomib/therapeutic use , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Proteasome Inhibitors/pharmacology , Prognosis , Plasma Cells/pathology , Drug Resistance, Neoplasm , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Cell Line, Tumor
17.
BMC Cancer ; 23(1): 980, 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37838670

ABSTRACT

BACKGROUND: Aponermin, a circularly permuted tumor necrosis factor-related apoptosis-inducing ligand, is a potential death receptor 4/5-targeted antitumour candidate. Previous phase 1/2 studies have demonstrated the efficacy of aponermin in patients with relapsed or refractory multiple myeloma (RRMM). To confirm the superiority of aponermin plus thalidomide and dexamethasone (aponermin group) over placebo plus thalidomide and dexamethasone (placebo group) in RRMM, a randomized, double-blinded, placebo controlled phase 3 trial was performed. METHODS: Four hundred seventeen patients with RRMM who had previously received at least two regimens were randomly assigned (2:1) to receive aponermin, thalidomide, and dexamethasone or placebo, thalidomide, and dexamethasone. The primary endpoint was progression-free survival (PFS). Key secondary endpoints included overall survival (OS) and overall response rate (ORR). RESULTS: A total of 415 patients received at least one dose of trial treatment (276 vs. 139). The median PFS was 5.5 months in the aponermin group and 3.1 months in the placebo group (hazard ratio, 0.62; 95% confidence interval [CI], 0.49-0.78; P < 0.001). The median OS was 22.4 months for the aponermin group and 16.4 months for the placebo group (hazard ratio, 0.70; 95% CI, 0.55-0.89; P = 0.003). Significantly higher rates of ORR (30.4% vs. 13.7%, P < 0.001) and very good partial response or better (14.1% vs. 2.2%, P < 0.0001) were achieved in the aponermin group than in the placebo group. Treatment with aponermin caused hepatotoxicity in some patients, as indicated by the elevated alanine transaminase, aspartate transaminase, or lactate dehydrogenase levels (52.2% vs. 24.5%, 51.1% vs. 19.4% and 44.9% vs. 21.6%, respectively), mostly grade 1/2, transient and reversible. The main grade 3/4 adverse events included neutropenia, pneumonia and hyperglycemia. The incidence of serious adverse events was similar between the two groups (40.6% vs. 37.4%). There was no evidence that aponermin leads to hematological toxicity, nephrotoxicity, cardiotoxicity, or secondary tumors. CONCLUSIONS: Aponermin plus thalidomide and dexamethasone significantly improved PFS, OS and ORR with manageable side effects in RRMM patients who had received at least two prior therapies. These results support the use of aponermin, thalidomide, and dexamethasone as a treatment option for RRMM patients. TRIAL REGISTRATION: The trial was registered at http://www.chictr.org.cn as ChiCTR-IPR-15006024, 17/11/2014.


Subject(s)
Multiple Myeloma , Neutropenia , Humans , Multiple Myeloma/pathology , Thalidomide , Dexamethasone , Neoplasm Recurrence, Local/pathology , Neutropenia/chemically induced , Antineoplastic Combined Chemotherapy Protocols/adverse effects
18.
Adv Sci (Weinh) ; 10(30): e2301868, 2023 10.
Article in English | MEDLINE | ID: mdl-37635169

ABSTRACT

The endometrial lining of the uterus is essential for women's reproductive health and consists of several different types of epithelial and stromal cells. Although models such as gland-like structures (GLSs) and endometrial assembloids (EnAos) are successfully established, they lack an intact luminal epithelium, which makes it difficult to recapitulate endometrial receptivity. Here, a novel EnAo model (ALI-EnAo) is developed by combining endometrial epithelial cells (EnECs) and stromal cells (EnSCs) and using an improved matrix and air-liquid interface (ALI) culture method. ALI-EnAos exhibit intact EnSCs and glandular and luminal epithelia, which recapitulates human endometrium anatomy, cell composition, hormone-induced menstrual cycle changes, gene expression profiles, and dynamic ciliogenesis. The model suggests that EnSCs, together with the extracellular matrix and ALI culture conditions, contribute to EnAo phenotypes and characteristics reflective of the endometrial menstrual cycle. This enables to transcriptionally define endometrial cell subpopulations. It anticipates that ALI-EnAos will facilitate studies on embryo implantation, and endometrial growth, differentiation, and disease.


Subject(s)
Embryo Implantation , Endometrium , Humans , Female , Endometrium/metabolism , Menstrual Cycle , Epithelium , Epithelial Cells/metabolism
19.
Food Chem ; 428: 136797, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37418879

ABSTRACT

Fresh-eating walnuts are perishable and become mildewed during shelf life, limiting their sales span. The effects of chlorine dioxide (ClO2) alone and its combination with walnut green husk extract (WGHE) on shelf stored fresh walnuts were investigated to develop a pollution-free preservative for the produce. The initial development of mildew incidence was delayed by both treatments under 25 °C, whereas, WGHE + ClO2 acted more effectively than ClO2 under 5 °C. The WGHE + ClO2 treatment presented superior effects on improving moisture, soluble sugar and total phenol content, alleviating loss of oil and unsaturated fatty acid and delaying peroxide value increase of walnut kernels at both temperatures. Both treatments inhibited the activities of three lipolytic enzymes and two oxidases at 25 °C and 5 °C, WGHE + ClO2 acted more effectively at 5 °C. The results guide the combined application of WGHE with ClO2 on shelf preservation of fresh walnut.


Subject(s)
Juglans , Antioxidants/pharmacology , Oxides/pharmacology , Plant Extracts/pharmacology , Chlorine
20.
Phlebology ; 38(8): 540-549, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37465926

ABSTRACT

OBJECTIVES: This research aimed to study the effect of microRNA-128-3p (miR-128-3p) on deep venous thrombosis (DVT). METHOD: The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Transwell chamber method, and flow cytometry technique were used in the cell experiments. Potential interconnection between miR-128-3p and silent information regulator sirtuin 1 (SIRT1) was revealed by luciferase activity. The concentration of miR-128-3p and mRNA SIRT1 was assessed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The receiver operating characteristic (ROC) curve was used to test the predictive effect of miR-128-3p in DVT. RESULTS: Decreased miR-128-3p expression was beneficial to cell proliferation and migration and inhibited inflammation, apoptosis, and adhesion of human umbilical vein endothelial cells (HUVECs). The impacts of miR-128-3p on HUVECs were achieved by targeting SIRT1. MiR-128-3p was upregulated in patients with DVT, and it was of great significance in differentiating patients with DVT. CONCLUSION: Overexpression of miR-128-3p might become a biomarker for patients with DVT.


Subject(s)
MicroRNAs , Venous Thrombosis , Humans , Sirtuin 1/genetics , Sirtuin 1/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Venous Thrombosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...