Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 25(16)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39201298

ABSTRACT

Normal root growth is essential for the plant uptake of soil nutrients and water. However, exogenous H2O2 inhibits the gravitropic growth of pea primary roots. It has been shown that CaCl2 application can alleviate H2O2 inhibition, but the exact alleviation mechanism is not clear. Therefore, the present study was carried out by combining the transcriptome and metabolome with a view to investigate in depth the mechanism of action of exogenous CaCl2 to alleviate the inhibition of pea primordial root gravitropism by H2O2. The results showed that the addition of CaCl2 (10 mmol·L-1) under H2O2 stress (150 mmol·L-1) significantly increased the H2O2 and starch content, decreased peroxidase (POD) activity, and reduced the accumulation of sugar metabolites and lignin in pea primary roots. Down-regulated genes regulating peroxidase, respiratory burst oxidase, and lignin synthesis up-regulated PGM1, a key gene for starch synthesis, and activated the calcium and phytohormone signaling pathways. In summary, 10 mmol·L-1 CaCl2 could alleviate H2O2 stress by modulating the oxidative stress response, signal transduction, and starch and lignin accumulation within pea primary roots, thereby promoting root gravitropism. This provides new insights into the mechanism by which CaCl2 promotes the gravitropism of pea primary roots under H2O2 treatment.


Subject(s)
Calcium Chloride , Gene Expression Regulation, Plant , Gravitropism , Hydrogen Peroxide , Pisum sativum , Plant Roots , Hydrogen Peroxide/metabolism , Pisum sativum/drug effects , Pisum sativum/metabolism , Pisum sativum/physiology , Gravitropism/drug effects , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Calcium Chloride/pharmacology , Gene Expression Regulation, Plant/drug effects , Transcriptome , Lignin/metabolism , Starch/metabolism , Oxidative Stress/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics
2.
J Agric Food Chem ; 72(36): 19604-19617, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39196612

ABSTRACT

The integrated plant-metabolite-soil regulation model of C. Pilosula growth and lobetyolin synthesis in response to continuous cropping lacks systematic investigation. In this study, we investigated the regulatory mechanisms of growth and lobetyolin synthesis in C. pilosula under continuous cropping stress based on high-performance liquid chromatography, transcriptome, and microbial sequencing on the root system and rhizosphere soil of C. pilosula from one year of cultivation and five years of continuous cropping. The findings of this study revealed that continuous cropping significantly inhibited the growth of C. pilosula and led to a notable decrease in the lobetyolin content. An effort was made to propose a potential pathway for lobetyolin biosynthesis in C. pilosula, which is closely linked to the expression of genes responsible for glucoside and unsaturated fatty acid chain synthesis. In addition, soil physicochemical properties and soil microorganisms had strong correlations with root growth and synthesis of lobetyolin, suggesting that soil physicochemical properties and microorganisms are the main factors triggering the succession disorder in C. pilosula. This study provides an in-depth interpretation of the regulatory mechanism of acetylenic glycoside synthesis and offers new insights into the triggering mechanism of C. pilosula succession disorder, which will guide future cultivation and industrial development.


Subject(s)
Codonopsis , Plant Roots , Plants, Medicinal , Soil , Soil/chemistry , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/microbiology , Plant Roots/chemistry , Codonopsis/metabolism , Codonopsis/growth & development , Codonopsis/chemistry , Plants, Medicinal/metabolism , Plants, Medicinal/chemistry , Plants, Medicinal/growth & development , Plants, Medicinal/genetics , Soil Microbiology , Polyynes/metabolism , Rhizosphere , Crop Production/methods
3.
Environ Toxicol Chem ; 43(9): 2005-2019, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38988284

ABSTRACT

Acetochlor, as a commonly used pre-emergent herbicide, can be toxic to crops and affect production if used improperly. However, the toxic mechanism of acetochlor on plants is not fully understood. The present study used a combination of transcriptomic analysis and physiological measurements to investigate the effects of short-term (15-day) exposure to different concentrations of acetochlor (1, 10, 20 mg/kg) on the morphology, physiology, and transcriptional levels of pea seedlings, aiming to elucidate the toxic response and resistance mechanisms in pea seedlings under herbicide stress. The results showed that the toxicity of acetochlor to pea seedlings was dose-dependent, manifested as dwarfing and stem base browning with increasing concentrations, especially at 10 mg/kg and above. Analysis of the antioxidant system showed that from the 1 mg/kg treatment, malondialdehyde, superoxide dismutase, peroxidase, and glutathione peroxidase in peas increased with increasing concentrations of acetochlor, indicating oxidative damage. Analysis of the glutathione (GSH) metabolism system showed that under 10 mg/kg treatment, the GSH content of pea plants significantly increased, and GSH transferase activity and gene expression were significantly induced, indicating a detoxification response in plants. Transcriptomic analysis showed that after acetochlor treatment, differentially expressed genes in peas were significantly enriched in the phenylpropane metabolic pathway, and the levels of key metabolites (flavonoids and lignin) were increased. In addition, we found that acetochlor-induced dwarfing of pea seedlings may be related to gibberellin signal transduction. Environ Toxicol Chem 2024;43:2005-2019. © 2024 SETAC.


Subject(s)
Herbicides , Pisum sativum , Toluidines , Transcriptome , Pisum sativum/drug effects , Pisum sativum/genetics , Herbicides/toxicity , Toluidines/toxicity , Transcriptome/drug effects , Seedlings/drug effects , Seedlings/genetics , Gene Expression Regulation, Plant/drug effects , Glutathione/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL