Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 254: 124126, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36446156

ABSTRACT

Long period fiber gratings (LPFGs) have special advantages in the detection of salt concentrations due to small volume, corrosion resistance and immunity to electromagnetic interference. However, it is very difficult to distinguish low-concentration salt solutions with usual LPFGs owing to the poor sensitivity. In this paper, the detection capability of the LPFG to low-concentration salt solutions was significantly improved by assembling salt-containing poly (diallyldimethylammonium chloride) (PDDA) and salt-containing poly (sodium-p-styrenesulfonate) (PSS). Experimental results showed that, the responsive wavelength range of the LPFG was remarkably broadened in low-concentration salt solutions after assembling nanofilms. The suitable detection range of the PDDA/PSS films coated LPFG for salt concentrations was 0-3%. In such a range, the average refractive index sensitivity and the average salinity sensitivity of the LPFG was as high as 29545.9 nm/RIU and 52.2 nm/% respectively. Compared with the LPFG without nanofilms, the discrimination ability of the PDDA/PSS films coated LPFG to 0-3% salt solutions increased by 568 times. The analysis demonstrated that PDDA and salt in the assembly solutions played a pivotal role in the above effects. The proposed sensor has extensive application prospects in the monitoring of salt concentration in many fields such as seawater, food processing, fermentation process, etc.


Subject(s)
Refractometry , Sodium Chloride
2.
Opt Express ; 29(9): 13520-13529, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33985085

ABSTRACT

An extremely sensitive multi-order mode refractive index (RI) sensor was fabricated by coupling titanium dioxide nanograss film coated FTO conductive glass with Kretschmann prism. Both calculation and experimental studies were carried out. Theoretical analysis by employing resonant waveguide modes indicated that the maximum sensitivity could be achieved when the mode worked at the weakly-bounded condition. The experimental results showed that for p-polarized and s-polarized light, the sensor exhibited a maximum RI sensitivity of 2938.21 nm/RI unit (RIU) and 1484.39 nm/RIU in the 1st order mode, respectively. Its maximum figure of merit was as high as 77.77. The proposed sensor is promising to be applied in environmental monitoring, immune analysis, nucleic acid test, etc.

3.
Appl Opt ; 56(7): 1930-1934, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28248391

ABSTRACT

We propose a novel, highly sensitive refractive index (RI) sensor by means of combining the Kretschmann prism with a TiO2 nanowire array and do not use a metallic layer in the Kretschmann configuration. Its RI sensing performance was investigated through measuring different concentrations of sodium chloride solution. Experimental results showed that, with increasing RI of liquid, the resonant wavelength in the reflectance spectrum redshifted gradually in the visible light range. There was a very good linear relationship between resonant wavelength and RI in the range of 1.3330 to 1.3546. More importantly, in contrast to the surface plasmon resonance (SPR) sensor, the interferometric sensors showed higher sensitivity to the external RI. In the case of the transverse magnetic mode, the RI sensitivity is up to 320,700.93 a.u./RIU (refractive index unit) by expression of light intensity, which is 9.55 times that of the SPR sensor. As for the transverse electric mode, it achieves 4371.76 nm/RIU by expression of the resonant wavelength, which is increased by a factor of 1.4 in comparison with the SPR sensor. Moreover, the experimental results have favorable repeatability. A TiO2 nanowire array sensor has also other advantages, such as easy manufacturing, low cost, and in situ determination, etc. To our knowledge, this fact is reported for the first time. It has great potential applications in the field of biological and chemical sensing.

SELECTION OF CITATIONS
SEARCH DETAIL
...