Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Langmuir ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958522

ABSTRACT

Amino acids make up a promising family of molecules capable of direct air capture (DAC) of CO2 from the atmosphere. Under alkaline conditions, CO2 reacts with the anionic form of an amino acid to produce carbamates and deactivated zwitterionic amino acids. The presence of the various species of amino acids and reactive intermediates can have a significant effect on DAC chemistry, the role of which is poorly understood. In this study, all-atom molecular dynamics (MD) based computational simulations and vibrational sum frequency generation (vSFG) spectroscopy studies were conducted to understand the role of competitive interactions at the air-aqueous interface in the context of DAC. We find that the presence of potassium bicarbonate ions, in combination with the anionic and zwitterionic forms of amino acids, induces concentration and charge gradients at the interface, generating a layered molecular arrangement that changes under pre- and post-DAC conditions. In parallel, an enhancement in the surface activity of both anionic and zwitterionic forms of amino acids is observed, which is attributed to enhanced interfacial stability and favorable intermolecular interactions between the adsorbed amino acids in their anionic and zwitterionic forms. The collective influence of these competitive interactions, along with the resulting interfacial heterogeneity, may in turn affect subsequent capture reactions and associated rates. These effects underscore the need to consider dynamic changes in interfacial chemical makeup to enhance DAC efficiency and to develop successful negative emission and storage technologies.

2.
J Colloid Interface Sci ; 669: 552-560, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38729003

ABSTRACT

HYPOTHESIS: Understanding the rules that control the assembly of nanostructured soft materials at interfaces is central to many applications. We hypothesize that electrolytes can be used to alter the hydration shell of amphiphilic oligomers at the air-aqueous interface of Langmuir films, thereby providing a means to control the formation of emergent nanostructures. EXPERIMENTS: Three representative salts - (NaF, NaCl, NaSCN) were studied for mediating the self-assembly of oligodimethylsiloxane methylimidazolium (ODMS-MIM+) amphiphiles in Langmuir films. The effects of the different salts on the nanostructure assembly of these films were probed using vibrational sum frequency generation (SFG) spectroscopy and Langmuir trough techniques. Experimental data were supported by atomistic molecular dynamic simulations. FINDINGS: Langmuir trough surface pressure - area isotherms suggested a surprising effect on oligomer assembly, whereby the presence of anions affects the stability of the interfacial layer irrespective of their surface propensities. In contrast, SFG results implied a strong anion effect that parallels the surface activity of anions. These seemingly contradictory trends are explained by anion driven tail dehydration resulting in increasingly heterogeneous systems with entangled ODMS tails and appreciable anion penetration into the complex interfacial layer comprised of headgroups, tails, and interfacial water molecules. These findings provide physical and chemical insight for tuning a wide range of interfacial assemblies.

3.
Chempluschem ; : e202300713, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456801

ABSTRACT

The intensive energy demands associated with solvent regeneration and CO2 release in current direct air capture (DAC) technologies makes their deployment at the massive scales (GtCO2/year) required to positively impact the climate economically unfeasible. This challenge underscores the critical need to develop new DAC processes with significantly reduced energy costs. Recently, we developed a new approach to photochemically drive efficient release of CO2 through an intermolecular proton transfer reaction by exploiting the unique properties of an indazole metastable-state photoacid (mPAH), opening a new avenue towards energy efficient on-demand CO2 release and solvent regeneration using abundant solar energy instead of heat. In this Concept Article, we will describe the principle of our photochemically-driven CO2 release approach for solvent-based DAC systems, discuss the essential prerequisites and conditions to realize this cyclable CO2 release chemistry under ambient conditions. We outline the key findings of our approach, discuss the latest developments from other research laboratories, detail approaches used to monitor DAC systems in situ, and highlight experimental procedures for validating its feasibility. We conclude with a summary and outlook into the immediate challenges that must be addressed in order to fully exploit this novel photochemically-driven approach to DAC solvent regeneration.

4.
ACS Appl Mater Interfaces ; 16(9): 12052-12061, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38411063

ABSTRACT

Interfaces are considered a major bottleneck in the capture of CO2 from air. Efforts to design surfaces to enhance CO2 capture probabilities are challenging due to the remarkably poor understanding of chemistry and self-assembly taking place at these interfaces. Here, we leverage surface-specific vibrational spectroscopy, Langmuir trough techniques, and simulations to mechanistically elucidate how cationic oligomers can drive surface localization of amino acids (AAs) that serve as CO2 capture agents speeding up the apparent rate of absorption. We demonstrate how tuning these interfaces provides a means to facilitate CO2 capture chemistry to occur at the interface, while lowering surface tension and improving transport/reaction probabilities. We show that in the presence of interfacial AA-rich aggregates, one can improve capture probabilities vs that of a bare interface, which holds promise in addressing climate change through the removal of CO2 via tailored interfaces and associated chemistries.

5.
Phys Chem Chem Phys ; 26(5): 4062-4070, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38224171

ABSTRACT

Direct access to trans-cis photoisomerization in a metastable state photoacid (mPAH) remains challenging owing to the presence of competing excited-state relaxation pathways and multiple transient isomers with overlapping spectra. Here, we reveal the photoisomerization dynamics in an indazole mPAH using time-resolved fluorescence (TRF) spectroscopy by exploiting a unique property of this mPAH having fluorescence only from the trans isomer. The combination of these experimental results with time-dependent density function theory (TDDFT) calculations enables us to gain mechanistic insight into this key dynamical process.

6.
Angew Chem Int Ed Engl ; 62(29): e202304957, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37198131

ABSTRACT

One of the grand challenges underlying current direct air capture (DAC) technologies relates to the intensive energy cost for sorbent regeneration and CO2 release, making the massive scale (GtCO2 /year) deployment required to have a positive impact on climate change economically unfeasible. This challenge underscores the critical need to develop new DAC processes with substantially reduced regeneration energies. Here, we report a photochemically-driven approach for CO2 release by exploiting the unique properties of an indazole metastable-state photoacid (mPAH). Our measurements on simulated and amino acid-based DAC systems revealed the potential of mPAH to be used for CO2 release cycles by regulating pH changes and associated isomers driven by light. Upon irradiating with moderate intensity light, a ≈55 % and ≈68 % to ≈78 % conversion of total inorganic carbon to CO2 was found for the simulated and amino acid-based DAC systems, respectively. Our results confirm the feasibility of on-demand CO2 release under ambient conditions using light instead of heat, thereby providing an energy efficient pathway for the regeneration of DAC sorbents.

7.
J Phys Chem B ; 127(21): 4886-4895, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37216432

ABSTRACT

Liquid/liquid (L/L) interfaces play a key, yet poorly understood, role in a range of complex chemical phenomena where time-evolving interfacial structures and transient supramolecular assemblies act as gatekeepers to function. Here, we employ surface-specific vibrational sum frequency generation combined with neutron and X-ray scattering methods to track the transport of dioctyl phosphoric acid (DOP) and di-(2-ethylhexyl) phosphoric acid (DEHPA) ligands used in solvent extraction at buried oil/aqueous interfaces away from equilibrium. Our results show evidence for a dynamic interfacial restructuring at low ligand concentrations in contrast to expectation. These time-varying interfaces arise from the transport of sparingly soluble interfacial ligands into the neighboring aqueous phase. These results support a proposed "antagonistic" role of ligand complexation in the aqueous phase that could serve as a holdback mechanism in kinetic liquid extractions. These findings provide new insights into interfacially controlled chemical transport at L/L interfaces and how these interfaces vary chemically, structurally, and temporally in a concentration-dependent manner and present potential avenues to design selective kinetic separations.

8.
ACS Appl Mater Interfaces ; 15(15): 19634-19645, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-36944180

ABSTRACT

As fossil fuels remain a major source of energy throughout the world, developing efficient negative emission technologies, such as direct air capture (DAC), which remove carbon dioxide (CO2) from the air, becomes critical for mitigating climate change. Although all DAC processes involve CO2 transport from air into a sorbent/solvent, through an air-solid or air-liquid interface, the fundamental roles the interfaces play in DAC remain poorly understood. Herein, we study the interfacial behavior of amino acid (AA) solvents used in DAC through a combination of vibrational sum frequency generation spectroscopy and molecular dynamics simulations. This study revealed that the absorption of atmospheric CO2 has antagonistic effects on subsequent capture events that are driven by changes in bulk pH and specific ion effects that feedback on surface organization and interactions. Among the three AAs (leucine, valine, and phenylalanine) studied, we identify and separate behaviors from CO2 loading, chemical changes, variations in pH, and specific ion effects that tune structural and chemical degrees of freedom at the air-aqueous interface. The fundamental mechanistic findings described here are anticipated to enable new approaches to DAC based on exploiting interfaces as a tool to address climate change.

9.
J Phys Chem Lett ; 13(46): 10889-10896, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36394318

ABSTRACT

Conventional wisdom suggests that cations play a minimal role in the assembly of cationic amphiphiles. Here, we show that at liquid/liquid (L/L) interfaces, specific cation effects can modulate the assemblies of hydrophobic tails in an oil phase despite being attached to cationic headgroups in the aqueous phase. We used oligo-dimethylsiloxane (ODMS) methyl imidazolium amphiphiles to identify these specific interactions at hexadecane/aqueous interfaces. Small cations, such as Li+, bind to the O atoms in the ODMS tail and pin it to the interface, thereby imposing a kinked conformation─as evidenced by vibrational sum frequency generation spectroscopy and molecular dynamics simulations. While larger Cs+ ions more readily partition to the interface, they do not form analogous complexes. Our data not only point to ways for controlling amphiphile structure at L/L interfaces but also suggest a means for the separation of Li+, or related applications, in soft-matter electronics.


Subject(s)
Molecular Dynamics Simulation , Water , Cations , Hydrophobic and Hydrophilic Interactions , Water/chemistry
10.
Biointerphases ; 17(2): 021201, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35473296

ABSTRACT

In this tutorial review, we discuss how the choice of upconversion pulse shape in broadband vibrational sum-frequency generation (SFG) spectrometer design impacts the chemical or physical insights one can obtain from a set of measurements. A time-domain picture of a vibrational coherence being mapped by a second optical field is described and the implications of how this mapping, or upconversion process, takes place are given in the context of several popular and emerging approaches found in the literature. Emphasis is placed on broadband frequency-domain measurements, where the choice of upconversion pulse enhances or limits the information contained in the SFG spectrum. We conclude with an outline for a flexible approach to SFG upconversion using pulse-shaping methods and a simple guide to design and optimize the associated instrumentation.


Subject(s)
Vibration
11.
J Phys Chem Lett ; 13(10): 2273-2280, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35239358

ABSTRACT

Bioinspired membrane molecules with improved physical properties and enhanced stability can serve as functional models for conventional lipid or amphiphilic species. Importantly, these molecules can also provide new insights into emergent phenomena that manifest during self-assembly at interfaces. Here, we elucidate the structural response and mechanistic steps underlying the self-assembly of the amphiphilic, charged oligodimethylsiloxane imidazolium cation (ODMS-MIM+) at the air-aqueous interface using Langmuir trough methods with coincident surface-specific vibrational sum-frequency generation (SFG) spectroscopy. We find evidence for a new compression-induced desolvation step that precedes commonly known disordered-to-ordered phase transitions to form nanoscopic assemblies. The experimental data was supported by atomistic molecular dynamics (MD) simulations to provide a detailed mechanistic picture underlying the assembly and the role of water in these phase transitions. The sensitivity of the hydrophobic ODMS tail conformations to compression─owing to distinct water-ODMS interactions and tail-tail solvation properties─offers new strategies for the design of interfaces that can be further used to develop soft-matter electronics and low-dimensional materials using physical and chemical controls.


Subject(s)
Molecular Dynamics Simulation , Water , Freedom , Hydrogen , Hydrogen Bonding , Water/chemistry
12.
J Phys Chem B ; 126(11): 2316-2323, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35289625

ABSTRACT

Molecular orientation plays a pivotal role in defining the functionality and chemistry of interfaces, yet accurate measurements probing this important feature are few, due, in part, to technical and analytical limitations in extracting information from molecular monolayers. For example, buried liquid/liquid interfaces, where a complex and poorly understood balance of inter- and intramolecular interactions impart structural constraints that facilitate the formation of supramolecular assemblies capable of new functions, are difficult to probe experimentally. Here, we use vibrational sum-frequency generation spectroscopy, numerical polarization analysis, and atomistic molecular dynamics simulations to probe molecular orientations at buried oil/aqueous interfaces decorated with amphiphilic oligomers. We show that the orientation of self-assembled oligomers changes upon the addition of salts in the aqueous phase. The evolution of these structures can be described by competitive ion effects in the aqueous phase altering the orientations of the tails extending into the oil phase. These specific anionic effects occur via interfacial ion pairing and associated changes in interfacial solvation and hydrogen-bonding networks. These findings provide more quantitative insight into orientational changes encountered during self-assembly and pave the way for the design of functional interfaces for chemical separations, neuromorphic computing applications, and related biomimetic systems.


Subject(s)
Molecular Dynamics Simulation , Water , Hydrogen Bonding , Salts , Spectrum Analysis/methods , Water/chemistry
13.
J Colloid Interface Sci ; 609: 807-814, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34872722

ABSTRACT

HYPOTHESIS: Organophosphorus-based ligands represent a versatile set of solvent extraction reagents whose chemical makeup plays an important role in extraction mechanism. We hypothesize that the branching of the extractant hydrophobic tail and its oil-phase solvation affect the liquid/liquid interfacial structure. Understanding the structure mediated adsorption and interfacial ordering becomes key in designing ligands with enhanced selectivity and efficiency for targeted extractions. EXPERIMENT: We employed vibrational sum frequency generation spectroscopy and interfacial tension measurements to extract thermodynamic adsorption energies, map interfacial ordering, and rationalize disparate behaviors of model di-(2-ethylhexyl) phosphoric acid and dioctyl phosphoric acid ligands at the hexadecane water interface. FINDINGS: With increased surface loading, ligands with branched hydrophobic tails formed stable interfaces at much lower concentrations than those observed for ligands with linear alkyl tails. The lack of an oil phase and associated solvation results in markedly different interfacial properties, and thus measurements made at air/liquid surfaces cannot be assumed to correlate with the processes occurring at buried liquid/liquid interfaces. We attribute these differences in the surface mediated self-assembly to key variations in hydrophobic interactions and tail solvation taking place in the oil phase demonstrating that interactions in both the polar and nonpolar phases are essential to understand self-assembly and function.


Subject(s)
Water , Adsorption , Hydrophobic and Hydrophilic Interactions , Ligands , Surface Properties
14.
Cryst Growth Des ; 22(2): 1066-1072, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-36845267

ABSTRACT

Recently, metal halide perovskites have emerged as promising semiconductor candidates for sensitive X-ray photon detection due to their suitable bandgap energies, excellent charge transport properties, and low material cost afforded by their low-temperature solution-processing preparation. Here, we report an improved methodology for single crystal (SC) growth, thermal and electrical properties of a two-dimensional (2D) layered halide material Rb4Ag2BiBr9, which has been identified as a potential candidate for X-ray radiation detection applications. The measured heat capacity for Rb4Ag2BiBr9 implies that there are no structural phase transitions upon cooling. Temperature dependence of thermal transport measurements further suggest remarkably low thermal conductivities of Rb4Ag2BiBr9 that are comparable to the lowest reported in literature. The bulk crystal resistivity is determined to be 2.59×109 Ω·cm from the current-voltage (I-V) curve. Density of trap states are estimated to be ~1010 cm-3 using the space-charge-limited-current (SCLC) measurements. The fabricated Rb4Ag2BiBr9-based X-ray detector shows good operational stability with no apparent current drift, which may be ascribed to the 2D crystal structure of Rb4Ag2BiBr9. Finally, by varying the X-ray tube current to change the corresponding dose rate, the Rb4Ag2BiBr9 X-ray detector sensitivity is determined to be 222.03 uCGy-1cm-2 (at an electric field of E = 24 V/mm).

15.
J Phys Chem A ; 125(40): 8765-8776, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34606276

ABSTRACT

Nonlinear optical (NLO) microscopy relies on multiple light-matter interactions to provide unique contrast mechanisms and imaging capabilities that are inaccessible to traditional linear optical imaging approaches, making them versatile tools to understand a wide range of complex systems. However, the strong excitation fields that are necessary to drive higher-order optical processes efficiently are often responsible for photobleaching, photodegradation, and interruption in many systems of interest. This is especially true for imaging living biological samples over prolonged periods of time or in accessing intrinsic dynamics of electronic excited-state processes in spatially heterogeneous materials. This perspective outlines some of the key limitations of two NLO imaging modalities implemented in our lab and highlights the unique potential afforded by the quantum properties of light, especially entangled two-photon absorption based NLO spectroscopy and microscopy. We further review some of the recent exciting advances in this emerging filed and highlight some major challenges facing the realization of quantum-light-enabled NLO imaging modalities.


Subject(s)
Nonlinear Optical Microscopy/instrumentation , Nonlinear Optical Microscopy/methods , Fluorescent Dyes/chemistry , Light , Nonlinear Dynamics , Photobleaching
16.
ACS Nano ; 15(9): 14285-14294, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34516085

ABSTRACT

The self-assembly of surfactant monolayers at interfaces plays a sweeping role in tasks ranging from household cleaning to the regulation of the respiratory system. The synergy between different nanoscale species at an interface can yield assemblies with exceptional properties, which enhance or modulate their function. However, understanding the mechanisms underlying coassembly, as well as the effects of intermolecular interactions at an interface, remains an emerging and challenging field of study. Herein, we study the interactions of gold nanoparticles striped with hydrophobic and hydrophilic ligands with phospholipids at a liquid-liquid interface and the resulting surface-bound complexes. We show that these nanoparticles, which are themselves minimally surface active, have a direct concentration-dependent effect on the rapid reduction of tension for assembling phospholipids at the interface, implying molecular coassembly. Through the use of sum frequency generation vibrational spectroscopy, we reveal that nanoparticles impart structural disorder to the lipid molecular layers, which is related to the increased volumes that amphiphiles can sample at the curved surface of a particle. The results strongly suggest that hydrophobic and electrostatic attractions imparted by nanoparticle functionalization drive lipid-nanoparticle complex assembly at the interface, which synergistically aids lipid adsorption even when lipids and nanoparticles approach the interface from opposite phases. The use of tensiometric and spectroscopic analyses reveals a physical picture of the system at the nanoscale, allowing for a quantitative analysis of the intermolecular behavior that can be extended to other systems.


Subject(s)
Gold , Metal Nanoparticles
17.
ACS Appl Mater Interfaces ; 13(28): 33734-33743, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34235915

ABSTRACT

Liquid/liquid interfaces play a central role in scientific fields ranging from nanomaterial synthesis and soft matter electronics to nuclear waste remediation and chemical separations. This diversity of functions arises from an interface's ability to respond to changing conditions in its neighboring bulk phases. Understanding what drives this interfacial flexibility can provide novel avenues for designing new functional interfaces. However, limiting this progress is an inadequate understanding of the subtle intermolecular and interphase interactions taking place at the molecular level. Here, we use surface-specific vibrational sum frequency generation spectroscopy combined with atomistic molecular dynamics simulations to investigate the self-assembly and structure of model ionic oligomers consisting of an oligodimethylsiloxane (ODMS) tail covalently attached to a positively charged methyl imidazolium (MIM+) head group at buried oil/aqueous interfaces. We show how the presence of seemingly innocuous salts can impart dramatic changes to the ODMS tail conformations in the oil phase via specific ion effects and ion-pairing interactions taking place in the aqueous phase. These specific ion interactions are shown to drive enhanced amphiphile adsorption, induce morphological changes, and disrupt emergent hydrogen-bonding structures at the interface. Tuning these interactions allows for independent control over the oligomer structure in the oil phase versus interfacial population changes and represents key mechanistic insight that is needed to control chemical reactions at liquid/liquid interfaces.

18.
Analyst ; 146(9): 3062-3072, 2021 May 04.
Article in English | MEDLINE | ID: mdl-33949432

ABSTRACT

Nonlinear optical microscopy that leverages an objective based total internal reflection (TIR) excitation scheme is an attractive means for rapid, wide-field imaging with enhanced surface sensitivity. Through select combinations of distinct modalities, one can, in principle, access complementary chemical and structural information for various chemical species near interfaces. Here, we report a successful implementation of such a wide-field nonlinear optical microscope system, which combines coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence (TPF), second harmonic generation (SHG), and sum frequency generation (SFG) modalities on the same platform. The intense optical fields needed to drive these high order nonlinear optical processes are achieved through the use of femtosecond pulsed light in combination with the intrinsic field confinement induced by TIR over a large field of view. The performance of our multimodal microscope was first assessed through the experimental determination of its chemical fidelity, intensity and polarization dependences, and spatial resolution using a set of well-defined model systems. Subsequently, its unique capabilities were validated through imaging complex biological systems, including Hydrangea quercifolia pollen grains and Pantoea sp. YR343 bacterial cells. Specifically, the spatial distribution of different molecular groups in the former was visualized via vibrational contrast mechanisms of CARS, whereas co-registered TPF imaging allowed the identification of spatially localized intrinsic fluorophores. We further demonstrate the feasibility of our microscope for wide-field CARS imaging on live cells through independent characterization of cell viability using spatially co-registered TPF imaging. This approach to TIR enabled wide-field imaging is expected to provide new insights into bacterial strains and their interactions with other species in the rhizosphere in a time-resolved and chemically selective manner.


Subject(s)
Microscopy , Spectrum Analysis, Raman , Optical Imaging , Photons , Vibration
19.
Opt Lett ; 45(11): 3087-3090, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32479466

ABSTRACT

Wide-field coherent anti-Stokes Raman scattering (CARS) microscopy offers an attractive means for the rapid and simultaneous acquisition of vibrationally resolved images across a large field of view. A major challenge in the implementation lies in how to achieve sufficiently strong excitation fields necessary to drive the third-order optical responses over the large focal region. Here, we report a new wide-field CARS microscope enabled by a total internal reflection excitation scheme using a femtosecond Ti:Sapphire oscillator to generate pump and broadband near-infrared Stokes pulses. The spectrally broad Stokes pulse, in combination with its inherent chirp, offers not only access to a wide range of Raman modes spanning ∼1000 to ∼3500cm-1 but also a straightforward means to select vibrational transitions within this range by simply varying the time delay between the pulses. The unique capabilities of this wide-field CARS microscope were validated by acquiring high-quality CARS images from the model and complex biological samples on conventional microscope coverslips.

20.
J Phys Chem A ; 124(19): 3915-3923, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32309940

ABSTRACT

Multimodal all-optical imaging involving coregistered femtosecond transient absorption microscopy (TAM), time-integrated photoluminescence (PL), and steady-state modalities such as confocal reflectance and transmission offers an appealing approach to gain a comprehensive understanding of complex electronic excited-state phenomena in spatially heterogeneous systems. A unique combination of these modalities allows us to unravel not only the competing electronic excited-state dynamical processes but also the underlying morphological information with simultaneous high temporal and spatial resolution. However, correlating the various images obtained from time-resolved and time-independent modalities is generally nontrivial and particularly challenging when the electronic dynamics under study evolve in both time and space. Here, we demonstrate a new approach for rationally correlating time-resolved microscopy with coregistered time-integrated or steady-state modalities. Specifically, our approach involves an extended global lifetime analysis of the time-resolved microscopic data set to separate distinct dynamical processes taking place on commensurate time scales, and the resulting decay-associated amplitude maps (DAAMs) were applied to explore correlations with the images acquired using time-independent modalities. The feasibility of our approach was validated through analyzing a multimodal data set acquired from a thin film of chloride-containing mixed lead halide perovskites (CH3NH3PbI3-xClx) using femtosecond transient absorption, time-integrated PL, and confocal reflectance microscopies. Analysis of the results obtained enable us to gain new insight into the complex ultrafast relaxation dynamics in this highly heterogeneous system.

SELECTION OF CITATIONS
SEARCH DETAIL
...