Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biotechnol J ; 22(5): 1387-1401, 2024 May.
Article in English | MEDLINE | ID: mdl-38130080

ABSTRACT

Viral diseases seriously threaten rice production. Plasmodesmata (PD)-associated proteins are deemed to play a key role in viral infection in host plants. However, few PD-associated proteins have been discovered in rice to afford viral infection. Here, inspired by the infection mechanism in insect vectors, we identified a member of the Flotillin family taking part in the cell-to-cell transport of rice stripe virus (RSV) in rice. Flotillin1 interacted with RSV nucleocapsid protein (NP) and was localized on PD. In flotillin1 knockout mutant rice, which displayed normal growth, RSV intercellular movement was retarded, leading to significantly decreased disease incidence. The PD pore sizes of the mutant rice were smaller than those of the wild type due to more callose deposits, which was closely related to the upregulation of two callose synthase genes. RSV infection stimulated flotillin1 expression and enlarged the PD aperture via RSV NP. In addition, flotillin1 knockout decreased disease incidences of southern rice black-streaked dwarf virus (SRBSDV) and rice dwarf virus (RDV) in rice. Overall, our study reveals a new PD-associated protein facilitating virus cell-to-cell trafficking and presents the potential of flotillin1 as a target to produce broad-spectrum antiviral rice resources in the future.


Subject(s)
Hemiptera , Membrane Proteins , Oryza , Virus Diseases , Animals , Plasmodesmata/metabolism , Viral Proteins/metabolism , Oryza/metabolism , Plant Diseases , Hemiptera/metabolism
2.
J Virol ; 96(7): e0214021, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35254088

ABSTRACT

Most plant viruses require insect vectors for transmission. One of the key steps for the transmission of persistent-circulative plant viruses is overcoming the gut barrier to enter epithelial cells. To date, little has been known about viral cofactors in gut epithelial cells of insect vectors. Here, we identified flotillin 2 as a plasma membrane protein that facilitates the infection of rice stripe virus (RSV) in its vector, the small brown planthopper. Flotillin 2 displayed a prominent plasma membrane location in midgut epithelial cells. The nucleocapsid protein of RSV and flotillin 2 colocalized on gut microvilli, and a nanomolar affinity existed between the two proteins. Knockout of flotillin 2 impeded the entry of virions into epithelial cells, resulting in a 57% reduction of RSV levels in planthoppers. The knockout of flotillin 2 decreased disease incidence in rice plants fed by viruliferous planthoppers from 40% to 11.7%. Furthermore, flotillin 2 mediated the infection of southern rice black-streaked dwarf virus in its vector, the white-backed planthopper. This work implies the potential of flotillin 2 as a target for controlling the transmission of rice stripe disease. IMPORTANCE Plant viral diseases are a major threat to world agriculture. The transmission of 80% of plant viruses requires vector insects, and 54% of vector-borne plant viruses are persistent-circulative viruses, which must overcome the barriers of gut cells with the help of proteins on the cell surface. Here, we identified flotillin 2 as a membrane protein that mediates the cell entry of rice stripe virus in its vector insect, small brown planthopper. Flotillin 2 displays a prominent cellular membrane location in midgut cells and can specifically bind to virions. The loss of flotillin 2 impedes the entry of virions into the midgut cells of vector insects and substantially suppresses viral transmission to rice. Therefore, flotillin 2 may be a promising target gene for manipulation in vector insects to control the transmission of rice stripe disease and perhaps that of other rice virus diseases in the future.


Subject(s)
Insect Proteins , Membrane Proteins , Oryza , Plant Viruses , Tenuivirus , Animals , Hemiptera/virology , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Vectors/virology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Oryza/virology , Plant Diseases/virology , Plant Viruses/physiology , Tenuivirus/genetics , Tenuivirus/metabolism
3.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34290144

ABSTRACT

The importin α family belongs to the conserved nuclear transport pathway in eukaryotes. However, the biological functions of importin α in the plasma membrane are still elusive. Here, we report that importin α, as a plasma membrane-associated protein, is exploited by the rice stripe virus (RSV) to enter vector insect cells, especially salivary gland cells. When the expression of three importin α genes was simultaneously knocked down, few virions entered the salivary glands of the small brown planthopper, Laodelphax striatellus Through hemocoel inoculation of virions, only importin α2 was found to efficiently regulate viral entry into insect salivary-gland cells. Importin α2 bound the nucleocapsid protein of RSV with a relatively high affinity through its importin ß-binding (IBB) domain, with a dissociation constant KD of 9.1 µM. Furthermore, importin α2 and its IBB domain showed a distinct distribution in the plasma membrane through binding to heparin in heparan sulfate proteoglycan. When the expression of importin α2 was knocked down in viruliferous planthoppers or in nonviruliferous planthoppers before they acquired virions, the viral transmission efficiency of the vector insects in terms of the viral amount and disease incidence in rice was dramatically decreased. These findings not only reveal the specific function of the importin α family in the plasma membrane utilized by viruses, but also provide a promising target gene in vector insects for manipulation to efficiently control outbreaks of rice stripe disease.


Subject(s)
Cell Membrane/enzymology , Hemiptera/virology , Karyopherins/metabolism , Salivary Glands/virology , Tenuivirus/physiology , Virus Internalization , Animals , Cell Membrane/metabolism , Insect Vectors/virology , Karyopherins/genetics , Oryza/virology , Plant Diseases/virology
4.
Philos Trans R Soc Lond B Biol Sci ; 374(1767): 20180313, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30967015

ABSTRACT

Whiteflies, Bemisia tabaci (Hemiptera), are pests causing economic damage to many crops, capable of transmitting hundreds of plant vector-borne viruses. They are believed to secrete salivary protein effectors that can improve vector colonization and reproductive fitness in host plants. However, little is known about effector biology and the precise mechanism of action of whitefly effectors. Here, we report a functional screening of B. tabaci salivary effector proteins (Bsp) capable of modulating plant innate immunity triggered by plant endogenous pattern peptide Pep1. Four immunity suppressors and two elicitors were identified. Bsp9, the most effective immunity suppressor, was further identified to directly interact with an immunity regulator WRKY33. We provide evidence that Bsp9 may suppress plant immune signalling by interfering with the interaction between WRKY33 and a central regulator in the MAPK cascade. The interference by Bsp9 therefore reduces plant resistance to whitefly by inhibiting activation of WRKY33-regulated immunity-related genes. Further detailed analysis based on transgenic plants found that whitefly effector Bsp9 could promote whitefly preference and performance, increasing virus transmission. This study enriches our knowledge on insect effector biology. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.


Subject(s)
Hemiptera/physiology , Insect Proteins/genetics , Plant Immunity/immunology , Plant Proteins/genetics , Transcription Factors/genetics , Animals , Hemiptera/genetics , Herbivory , Insect Proteins/metabolism , Plant Immunity/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism
5.
Sci Rep ; 5: 16476, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26602265

ABSTRACT

Although histone H3K9 methylation has been intensively studied in animals and a model plant Arabidopsis thaliana, little is known about the evolution of the histone methyltransferase and its roles in plant biotic stress response. Here we identified a Nicotiana benthamiana homolog of H3K9 histone methyltransferase KRYPTONITE (NbKYP) and demonstrated its fundamental roles on methylation of plant and virus, beside of leading to the suppression of endogenous gene expression and virus replication. NbKYP and another gene encoding DNA methyltransferase CHROMOMETHYLTRANSFERASE 3 (NbCMT3-1) were further identified as the key components of maintenance of transcriptional gene silencing, a DNA methylation involved anti-virus machinery. All three types of DNA methylations (asymmetric CHH and symmetric CHG/CG) were severely affected in NbKYP-silenced plants, but only severe reduction of CHG methylation found in NbCMT3-1-silenced plants. Attesting to the importance of plant histone H3K9 methylation immunity to virus, the virulence of geminiviruses requires virus-encoded trans-activator AC2 which inhibits the expression of KYP via activation of an EAR-motif-containing transcription repressor RAV2 (RELATED TO ABI3 and VP1). The reduction of KYP was correlated with virulence of various similar geminiviruses. These findings provide a novel mechanism of how virus trans-activates a plant endogenous anti-silencing machinery to gain high virulence.


Subject(s)
Geminiviridae/metabolism , Gene Silencing , Histone-Lysine N-Methyltransferase/genetics , Nicotiana/genetics , Nicotiana/virology , Plant Proteins/genetics , Amino Acid Sequence , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins , Catalytic Domain , DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Geminiviridae/genetics , Gene Expression Regulation, Plant , Genes, Reporter , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Molecular Sequence Data , Plant Proteins/antagonists & inhibitors , Plant Proteins/metabolism , Sequence Alignment , Nicotiana/enzymology , Transcriptional Activation , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...