Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
3.
Front Cell Infect Microbiol ; 11: 599734, 2021.
Article in English | MEDLINE | ID: mdl-33738265

ABSTRACT

Objectives: Several reports suggesting that the intestinal microbiome plays a key role in the development of inflammatory bowel disease (IBD) or colorectal cancer (CRC), but the changes of intestinal bacteria in healthy people, patients with IBD and CRC are not fully explained. The study aimed to investigate changes of intestinal bacteria in healthy subjects, patients with IBD, and patients with CRC. Materials: We collected data from the European Nucleotide Archive on healthy people and patients with colorectal cancer with the study accession number PRJEB6070, PRJEB7774, PRJEB27928, PRJEB12449, and PRJEB10878, collected IBD patient data from the Integrated Human Microbiome Project from the Human Microbiome Project Data Portal. We performed metagenome-wide association studies on the fecal samples from 290 healthy subjects, 512 IBD patients, and 285 CRC patients. We used the metagenomics dataset to study bacterial community structure, relative abundance, functional prediction, differentially abundant bacteria, and co-occurrence networks. Results: The bacterial community structure in both IBD and CRC was significantly different from healthy subjects. Our results showed that IBD patients had low intestinal bacterial diversity and CRC patients had high intestinal bacterial diversity compared to healthy subjects. At the phylum level, the relative abundance of Firmicutes in IBD decreased significantly, while the relative abundance of Bacteroidetes increased significantly. At the genus level, the relative abundance of Bacteroides in IBD was higher than in healthy people and CRC. Compared with healthy people and CRC, the main difference of intestinal bacteria in IBD patients was Bacteroidetes, and compared with healthy people and IBD, the main difference of intestinal bacteria in CRC patients was in Fusobacteria, Verrucomicrobia, and Proteobacteria. The main differences in the functional composition of intestinal bacteria in healthy people, IBD and CRC patients were L-homoserine and L-methionine biosynthesis, 5-aminoimidazole ribonucleotide biosynthesis II, L-methionine biosynthesis I, and superpathway of L-lysine, L-threonine, and L-methionine biosynthesis I. The results of stratified showed that the abundance of Firmicutes, Bacteroidetes, and Actinobacteria involved in metabolic pathways has significantly changed. Besides, the association network of intestinal bacteria in healthy people, IBD, and CRC patients has also changed. Conclusions: In conclusion, compared with healthy people, the taxonomic and functional composition of intestinal bacteria in IBD and CRC patients was significantly changed.


Subject(s)
Colorectal Neoplasms , Inflammatory Bowel Diseases , Bacteria/genetics , Humans , Metagenome , Metagenomics , RNA, Ribosomal, 16S/genetics
4.
Front Oncol ; 11: 700038, 2021.
Article in English | MEDLINE | ID: mdl-35004267

ABSTRACT

Gut microbiota is a complex aggregation of microbial organisms, which offers diverse protective benefits to the host. Dysbiosis of intestinal microbiota is frequently associated with many diseases. Vitamin D3 (VD), which was originally associated with bone health, also possesses antimicrobial activities and can act through antimicrobial peptide. Cathelicidin is a type of antimicrobial peptide in host to maintain the balance of gut microbiome. Our current study sought to evaluate the protective effect of VD and cathelicidin in mice intestines by administration of VD or mCRAMP-encoding L. lactis. We herein provided a comprehensive profile of the impact of VD and mCRAMP on gut microbiota using 16S rRNA sequencing, followed by bioinformatics and statistical analysis. Our results revealed an increased richness of bacterial community in mice intestines due to VD administration. Moreover, we showed a beneficial effect of VD and mCRAMP by enhancing the colonization of bacterial taxa that are associated with protective effects to the host but repressing the propagation of bacterial taxa that are associated with harmful effects to the host. Various metabolic pathways related to amino acid and lipid metabolism were affected in this process. We further established a bacterial panel as a reliable biomarker to evaluate the efficacy of remodeling the mice gut microbiota by VD and mCRAMP administration. The uncovered effects will deepen the comprehension about the antibacterial mechanisms of VD and mCRAMP and provide new insights for therapeutic implication of them.

5.
Front Mol Biosci ; 7: 599340, 2020.
Article in English | MEDLINE | ID: mdl-33365328

ABSTRACT

5-Methylcytosine (m5C) is a kind of methylation modification that occurs in both DNA and RNA and is present in the highly abundant tRNA and rRNA. It has an important impact on various human diseases including cancer. The function of m5C is modulated by regulatory proteins, including methyltransferases (writers) and special binding proteins (readers). This study aims at comprehensive study of the m5C RNA methylation-related genes and the main pathways under m5C RNA methylation in gastrointestinal (GI) cancer. Our result showed that the expression of m5C writers and reader was mostly up-regulated in GI cancer. The NSUN2 gene has the highest proportion of mutations found in GI cancer. Importantly, in liver cancer, higher expression of almost all m5C regulators was significantly associated with lower patient survival rate. In addition, the expression level of m5C-related genes is significantly different at various pathological stages. Finally, we have found through bioinformatics analysis that m5C regulatory proteins are closely related to the ErbB/PI3K-Akt signaling pathway and GSK3B was an important target for m5C regulators. Besides, the compound termed streptozotocin may be a key candidate drug targeting on GSK3B for molecular targeted therapy in GI cancer.

6.
Food Chem ; 319: 126568, 2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32169768

ABSTRACT

Penthorum chinense Pursh is a dietary medicinal plant widely distributed in Asia-Pacific countries. The present study aims to profile the chemical constituents of P. chinense and investigate its prebiotic role in modulating gut microbiota. Fifty polyphenolic compounds were rapidly identified using UPLC-HR-MS. Total flavonoid and phenolic contents of P. chinense were 46.6% and 61.3% (w/w), respectively. Thirteen individual polyphenols were quantified, which accounted for 33.1% (w/w). P. chinense induced structural arrangement of microbial community in mice, showing increased microbiota diversity, elevated Bacteroidetes/Firmicutes ratio and enriched gut health-promoting bacteria. After a one-week drug-free wash, most of these changes were recovered, but the abundance of some beneficial bacteria was further increased. The altered composition of gut microbiota enriched several metabolic pathways. Moreover, P. chinense increased antioxidant capacity in vivo. The results suggest that polyphenol-enriched P. chinense modulates gut microbiota and enhances antioxidant capacity in mice toward a beneficial environment for host health.


Subject(s)
Magnoliopsida/chemistry , Prebiotics/analysis , Animals , Antioxidants/analysis , Flavonoids/analysis , Male , Mice , Mice, Inbred C57BL , Plants, Medicinal , Polyphenols/analysis
7.
Int J Med Sci ; 16(7): 922-930, 2019.
Article in English | MEDLINE | ID: mdl-31341405

ABSTRACT

Background: Lung cancer is one of the most common malignant tumors. Histone methylation was reported to regulate the expression of a variety of genes in cancer. However, comprehensive understanding of the expression profiles of histone methyltransferases and demethylases in lung cancer is still lacking. Methods: We analyzed the expression profile of methyltransferases and demethylases in non-small cell lung cancer (NSCLC) using TCGA and cBioportal databases. The mutation, expression level, association with survival and clinical parameters of histone methyltransferases and demethylases were determined. Results: We found overall upregulation of histone regulators in NSCLC. Mutation and copy number alteration of histone methylation related genes both exist in NSCLC. The expression of certain histone methylation related genes were significantly associated with overall survival and clinical attributes. Conclusions: Our result suggests that alteration of histone methylation is strongly involved in NSCLC. Some histone methylation related genes might serve as potential prognosis predictor or therapeutic target for NSCLC. The significance of some histone methylation related genes was contrary to the literature and awaits further validation.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Gene Expression Regulation, Neoplastic , Histone Demethylases/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Computational Biology , DNA Methylation , Datasets as Topic , Epigenesis, Genetic , Gene Expression Profiling , Histones/metabolism , Humans , Kaplan-Meier Estimate , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Prognosis , Protein Processing, Post-Translational , Up-Regulation
8.
Reprod Fertil Dev ; 30(10): 1298-1313, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29661269

ABSTRACT

This study was conducted to investigate the effect of vitrification on the dynamics of the global transcriptome in bovine germinal vesicle (GV) oocytes and their in vitro-derived metaphase II (MII) oocytes. The GV oocytes were vitrified using the open-pulled straw method. After warming, GV oocytes and the resulting MII-stage oocytes were cultured in vitro for 2h and 24h respectively and were then collected. The fresh GV oocytes and their in vitro-derived MII oocytes were used as controls. Then, each pool (fresh GV, n=3; vitrified GV, n=4; fresh MII, n=1 and MII derived from vitrified GV, n=2) from the different stages was used for mRNA transcriptome sequencing. The results showed that the in vitro maturation rates of GV oocytes were significantly decreased (32.36% vs 53.14%) after vitrification. Bovine GV oocyte vitrification leads to 12 significantly upregulated and 19 downregulated genes. After culturing in vitro, the vitrification-derived MII oocytes showed 47 significantly upregulated and six downregulated genes when compared with those from fresh GV oocytes. Based on molecular function-gene ontology terms analysis and the Kyoto encyclopaedia of genes (KEGG) pathway database, the differentially expressed genes were associated with the pathways of cell differentiation and mitosis, transcription regulation, regulation of actin cytoskeleton, apoptosis and so on, which potentially result in the lower in vitro development of GV bovine oocytes.


Subject(s)
In Vitro Oocyte Maturation Techniques/methods , Oocytes/metabolism , Transcriptome , Animals , Cattle , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cryopreservation , Female , Gene Expression Regulation, Developmental , Metaphase , Oocytes/cytology , Oocytes/growth & development , Oogenesis/genetics , Vitrification
9.
Cryobiology ; 81: 206-209, 2018 04.
Article in English | MEDLINE | ID: mdl-29476719

ABSTRACT

The present study aimed to investigate the effect of vitrification on the expression of fertilization related genes (CD9 and CD81) and DNA methyl transferases (DNMT1 and DNMT3b) in bovine germinal vesicle (GV) oocytes and their resulting metaphase Ⅱ (MⅡ) stages after in vitro maturation culture. GV oocytes were vitrified using the open-pulled straw method; after warming, they were cultured in vitro. The vitrified-warmed GV oocytes and more developed MII oocytes were used to calculate the maturation rates (first polar body extrusion under a stereomicroscopy), and to detect mRNA expression (qRT-PCR). Fresh GV oocytes and their in vitro-derived MII oocytes served as controls. The results showed that both the maturation rate (54.23% vs. 42.93%) and the relative abundance of CD9 mRNA decreased significantly (p < 0.05) in bovine GV oocytes after vitrification, but the expression of CD81 and DNMT3b increased significantly. After in vitro maturation of vitrified GV oocytes, the resulting MII oocytes showed lower (p < 0.05) mRNA expression of genes (CD9, CD81, DNMT1 and DNMT3b) when compared to the control group (MII oocytes). Altogether, vitrification decreased the maturation rate of bovine GV oocytes and changed the expression of fertilization related genes and DNA methyl transferases during in vitro maturation.


Subject(s)
Cryopreservation/methods , Oocytes/metabolism , Oogenesis/physiology , Tetraspanin 28/biosynthesis , Tetraspanin 29/biosynthesis , Vitrification , Animals , Cattle , Female , Oocytes/drug effects , Oogenesis/drug effects
10.
Cryobiology ; 73(3): 335-342, 2016 12.
Article in English | MEDLINE | ID: mdl-27725165

ABSTRACT

The study was aimed to investigate the effect of melatonin on the development potential of mouse MII oocytes after cryopreservation. Mouse MII oocytes were subjected first to vitrification/warming and 2 h of in vitro culture (phase 1), then to parthenogenetic activation (PA) followed by in vitro culture of parthenogenetic embryos (phase 2). Different concentrations of melatonin (0, 10-9, 10-6 mol/L) were added to the medium during either phase 1, phase 2 or both phases. The fresh oocytes were used as control. When melatonin was used during both phases, 10-9 mol/L melatonin-treated group showed similar rates of cleavage and 4-cell embryo development compared with control, which were significantly higher than those of melatonin-free group, while the rates in either 10-6 mol/L melatonin-treated or melatonin-free groups were significantly lower than that in control. When 10-9 mol/L melatonin was added during either phase 1 or phase 2, both cleavage and 4-cell embryo development rates of either group were significantly lower than those of control. After oocyte vitrification/warming and PA, the ROS levels increased significantly and maternal-to-zygotic transition (MZT) related genes (Dcp1a, Dcp2, Hspa1a, Eif1ax, Pou5f1, Sox2) expression were disorganized. However, after 10-9 mol/L melatonin supplementation, the ROS levels decreased significantly compared with melatonin-free group, and the gene expressions were almost recovered to normal level of control group. These results demonstrated that 10-9 mol/L melatonin supplementation could increase the developmental potential of vitrified-warmed mouse MII oocytes, which may result from ROS scavenging activities and recovery of normal levels of the expressions of MZT-related genes.


Subject(s)
Cryopreservation/methods , Cryoprotective Agents/pharmacology , Melatonin/pharmacology , Vitrification , Animals , Antioxidants/pharmacology , Embryonic Development/drug effects , Female , Metaphase/drug effects , Mice , Oocytes/drug effects , Parthenogenesis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...