Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
J Insect Sci ; 24(4)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39023176

ABSTRACT

Tephritis angustipennis (Diptera: Tephritidae) and Campiglossa loewiana (Diptera: Tephritidae) are phytophagous pests in China. Their damage has significantly impacted the collection and cultivation of germplasm resources of native Asteraceae plants. However, the genetic characteristics and structure of their population are unclear. This study focused on the highly damaging species of T. angustipennis and C. loewiana collected from the three-river source region (TRSR). We amplified the mitochondrial cytochrome C oxidase subunit I (mtCOI) gene sequences of these pests collected from this area and compared them with COI sequences from GenBank. We also analyzed their genetic diversity and structure. In T. angustipennis, 5 haplotypes were identified from 5 geographic locations; the genetic differentiation between France population FRPY (from Nylandia, Uusimaa) and China populations GLJZ (from Dehe Longwa Village, Maqin County), GLDR (from Zhique Village, Dari County), and GLMQ (from Rijin Village, Maqin County) was the strongest. GLJZ exhibited strong genetic differentiation from GLDR and GLMQ, with relatively low gene flow. For C. loewiana, 11 haplotypes were identified from 5 geographic locations; the genetic differentiation between the Chinese population GLMQ-YY (from Yangyu Forest Farm, Maqin County) and Finnish population FDNL (from Nylandia, Uusimaa) was the strongest, with relatively low gene flow, possibly due to geographical barriers in the Qinghai-Tibet plateau. Only 1 haplotype was identified across GLDR, GLMQ, and GLBM. High gene flow between distant locations indicates that human activities or wind dispersal may facilitate the dispersal of fruit flies and across different geographic. Geostatistical analysis suggested a recent population expansion of these 2 species in TRSR. Our findings provide technical references for identifying pests in the TRSR region and theoretical support for managing resistance, monitoring pest occurrences, analyzing environmental adaptability, and formulating biological control strategies for Tephritidae pests on Asteraceae plants.


Subject(s)
DNA Barcoding, Taxonomic , Electron Transport Complex IV , Genetic Variation , Tephritidae , Animals , Tephritidae/genetics , China , Electron Transport Complex IV/genetics , Haplotypes , Phylogeny , Insect Proteins/genetics
2.
Ying Yong Sheng Tai Xue Bao ; 30(1): 127-136, 2019 Jan 20.
Article in Chinese | MEDLINE | ID: mdl-30907533

ABSTRACT

Enclosing is an effective rehabilitation measure for degraded pastures that mimics natural recovery of vegetation. To examine the interaction between biotic and abiotic in lightly degraded and enclosing grasslands is helpful for a clear understanding of the structure and function of grassland ecosystem. In this study, soil microbial community and soil stoichiometric characteristics in lightly degraded and 10-year enclosing alpine meadows were studied by high-throughput sequencing and Biolog-Eco methods. The results showed that compared with lightly degraded grassland, the concentration of soil NH4+-N in the enclosing grassland increased significantly, while total K (TK) dramatically decreased. There was no obvious variation in soil total organic carbon (TOC), total N (TN), total P (TP), NO3--N, available P (AP), available K (AK), microbial biomass C (MBC) and microbial biomass N (MBN). The soil microbial biomass C/N was significantly enhanced. The carbon metabolic capabilities of soil microbes in different soil layers of alpine mea-dow were obviously increased with the prolonged incubation time, but there was no significant difference between lightly degraded and enclosed meadows. The OTUs of soil bacteria was significantly higher than that of fungi in alpine meadow. The microbial similarity between lightly degraded and fencing grasslands was 27.0%-32.7%. Enclosing significantly increased the fungal relative richness of Ascomycota, Zygomycetes and Chytridiomycota, while simultaneously decreased the rela-tive abundance of Basidiomycetes. Compared with lightly degraded meadow, the bacterial relative richness of Acidobacteria significantly decreased in enclosing meadow. The community composition of soil fungi and bacteria greatly varied among different soil layers. There was significant difference of fungal community composition in the upper soils between lightly degraded and enclosed grassland. The soil bacterial community diversity was greatly affected by soil TN and AK, while the fungal community diversity was significantly affected by plant aboveground biomass. Soil AK produced great influence on soil microbial carbon source utilization capacity. Generally, long-term grazing exclosure had no significant effects on soil nutrients and soil microbial community diversity of lightly degraded grassland and thus would waste the pasture resources, whereas appropriate grazing could maintain the sustainable utilization of grassland.


Subject(s)
Environmental Monitoring , Grassland , Microbiota , Soil Microbiology , Carbon , Soil
3.
Environ Monit Assess ; 185(10): 8051-64, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23568012

ABSTRACT

Understanding the complex effects of biotic and abiotic factors on the composition of vegetation is very important for developing and implementing strategies for promoting sustainable grassland development. The vegetation-disturbance-environment relationship was examined in degraded alpine grasslands in the headwater areas of three rivers on the Qinghai-Tibet Plateau in this study. The investigated hypotheses were that (1) the heterogeneity of the vegetation of the alpine grassland is due to a combination of biotic and abiotic factors and that (2) at a small scale, biotic factors are more important for the distribution of alpine vegetation. On this basis, four transects were set along altitudinal gradients from 3,770 to 3,890 m on a sunny slope, and four parallel transects were set along altitudinal gradients on a shady slope in alpine grasslands in Guoluo Prefecture of Qinghai Province, China. It was found that biological disturbances were the major forces driving the spatial heterogeneity of the alpine grassland vegetation and abiotic factors were of secondary importance. Heavy grazing and intensive rat activity resulted in increases in unpalatable and poisonous weeds and decreased fine forages in the form of sedges, forbs, and grasses in the vegetation composition. Habitat degradation associated with biological disturbances significantly affected the spatial variation of the alpine grassland vegetation, i.e., more pioneer plants of poisonous or unpalatable weed species, such as Ligularia virgaurea and Euphorbia fischeriana, were found in bare patches. Environmental/abiotic factors were less important than biological disturbances in affecting the spatial distribution of the alpine grassland vegetation at a small scale. It was concluded that rat control and light grazing should be applied first in implementing restoration strategies. The primary vegetation in lightly grazed and less rat-damaged sites should be regarded as a reference for devising vegetation restoration measures in alpine pastoral regions.


Subject(s)
Environmental Monitoring , Soil Pollutants/analysis , Altitude , Animals , China , Conservation of Natural Resources , Ecosystem , Poaceae/growth & development , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...