Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
1.
PeerJ ; 12: e17325, 2024.
Article in English | MEDLINE | ID: mdl-38832044

ABSTRACT

The azalea (Rhododendron simsii Planch.) is an important ornamental woody plant with various medicinal properties due to its phytochemical compositions and components. However little information on the metabolite variation during flower development in Rhododendron has been provided. In our study, a comparative analysis of the flavonoid profile was performed in Rhododendron pulchrum sweet at three stages of flower development, bud (stage 1), partially open flower (stage 2), and full bloom (stage 3). A total of 199 flavonoids, including flavone, flavonol, flavone C-glycosides, flavanone, anthocyanin, and isoflavone were identified. In hierarchical clustering analysis (HCA) and principal component analysis (PCA), the accumulation of flavonoids displayed a clear development stage variation. During flower development, 78 differential accumulated metabolites (DAMs) were identified, and most were enriched to higher levels at the full bloom stage. A total of 11 DAMs including flavone (chrysin, chrysoeriol O-glucuronic acid, and chrysoeriol O-hexosyl-O-pentoside), isoflavone (biochanin A), and flavonol (3,7-di-O-methyl quercetin and isorhamnetin) were significantly altered at three stages. In particular, 3,7-di-O-methyl quercetin was the top increased metabolite during flower development. Furthermore, integrative analyses of metabolomic and transcriptomic were conducted, revealing that the contents of isoflavone, biochanin A, glycitin, and prunetin were correlated with the expression of 2-hydroxyisoflavanone dehydratase (HIDH), which provide insight into the regulatory mechanism that controls isoflavone biosynthesis in R. pulchrum. This study will provide a new reference for increasing desired metabolites effectively by more accurate or appropriate genetic engineering strategies.


Subject(s)
Flavonoids , Flowers , Rhododendron , Rhododendron/metabolism , Rhododendron/genetics , Rhododendron/growth & development , Flowers/metabolism , Flowers/growth & development , Flowers/genetics , Flavonoids/metabolism , Flavonoids/analysis
2.
Sci Data ; 11(1): 616, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866804

ABSTRACT

The development and aging of the brain constitute a lifelong dynamic process, marked by structural and functional changes that entail highly coordinated cellular differentiation and epigenetic regulatory mechanisms. Chromatin accessibility serves as the foundational basis for genetic activity. However, the holistic and dynamic chromatin landscape that spans various brain regions throughout development and ageing remains predominantly unexplored. In this study, we employed single-nucleus ATAC-seq to generate comprehensive chromatin accessibility maps, incorporating data from 69,178 cells obtained from four distinct brain regions - namely, the olfactory bulb (OB), cerebellum (CB), prefrontal cortex (PFC), and hippocampus (HP) - across key developmental time points at 7 P, 3 M, 12 M, and 18 M. We delineated the distribution of cell types across different age stages and brain regions, providing insight into chromatin accessible regions and key transcription factors specific to different cell types. Our data contribute to understanding the epigenetic basis of the formation of different brain regions, providing a dynamic landscape and comprehensive resource for revealing gene regulatory programs during brain development and aging.


Subject(s)
Aging , Brain , Chromatin , Animals , Chromatin/metabolism , Mice , Aging/genetics , Brain/growth & development , Brain/metabolism , Epigenesis, Genetic , Hippocampus/metabolism , Hippocampus/growth & development , Prefrontal Cortex/metabolism , Prefrontal Cortex/growth & development
3.
Molecules ; 29(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893402

ABSTRACT

The use of vegetable oil-dervied plasticizers to enhance the flexibility of polylactic acid (PLA) has received much attention due to their renewability, inexpensiveness and biodegradation. However, the double bonds in vegetable oil-based plasticizers limit their compatibility with PLA, resulting in PLA-derived products with reduced flexibility. Herein, we examined soybean oil-derived hydrogenated dimer acid-based polyethylene glycol methyl ether esters (HDA-2n, 2n = 2, 4, 6 or 8, referring to the ethoxy units) developed via the direct esterification of saturated hydrogenated dimer acid and polyethylene glycol monomethyl ethers. The resulting HDA-2n was first used as a plasticizer for PLA, and the effects of the ethoxy units in HDA-2n on the overall performance of the plasticized PLA were systematically investigated. The results showed that, compared with PLA blended with dioctyl terephthalate (DOTP), the PLA plasticized by HDA-8 with the maximum number of ethoxy units (PLA/HDA-8) exhibited better low-temperature resistance (40.1 °C vs. 15.3 °C), thermal stability (246.8 °C vs. 327.6 °C) and gas barrier properties. Additionally, the biodegradation results showed that HDA-8 could be biodegraded by directly burying it in soil. All results suggest that HDA-8 could be used as green alternative to the traditional petroleum-based plasticizer DOTP, which is applied in the PLA industry.

4.
Mar Biotechnol (NY) ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874827

ABSTRACT

Spotted knifejaw (Oplegnathus punctatus) is a marine economic fish with high food and ecological value, and its growth process has obvious male and female sexual dimorphism, with males growing significantly faster than females. However, the current sex identification technology is not yet mature, which will limit the growth rate of O. punctatus aquaculture and the efficiency of separate sex breeding, so the development of efficient sex molecular markers is imperative. This study identified a 926 bp DNA insertion fragment in the cdkn1/srsf3 intergenic region of O. punctatus males through whole-genome scanning, comparative genomics, and structural variant analysis. A pair of primers was designed based on the insertion information of the Y chromosome intergenic region in male individuals. Agarose gel electrophoresis revealed the amplification of two DNA fragments, 1118 bp and 192 bp, in male O. punctatus individuals. The 926 bp fragment was identified as the insertion in the intergenic region of cdkn1/srsf3 in males, while only a single 192 bp DNA fragment was amplified in females. The biological sex of the individuals identified in this manner was consistent with their known phenotypic sex. In this study, we developed a method to detect DNA insertion variants in the intergenic region of O. punctatus. Additionally, we introduced a new DNA marker for the rapid identification of the sex of O. punctatus, which enhances detection efficiency. The text has important reference significance and application value in sex identification, all-male breeding, and lineage selection. It provides new insights into the regulation of variation in the intergenic region of cdkn1/srsf3 genes and the study of RNA shearing.

5.
Sci Rep ; 14(1): 13854, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879631

ABSTRACT

Gemini-type imidazoline quaternary ammonium salt is a new type of environmentally friendly corrosion inhibitor has been widely used in engineering materials. However, most of them are hazardous/toxic compounds derived from petroleum-based products, which did harm to environment. In this work, an environmentally friendly Gemini-shaped imidazoline quaternary ammonium salt corrosion inhibitor (G211) was synthesized using cheap fatty acid recycled from dimer acid industry as feedstock. The corrosion inhibition effects of G211 on Q235 steel in 1 M HCl solution were investigated through weight loss experiments, potential polarization curves, and alternating current impedance spectroscopy experiments. The results show that the inhibition rate of G211 as a mixed-type inhibitor is up to 94.4% and the concentration drop as low as 500 ppm at 25 â„ƒ. The adsorption of G211 on Q235 surface follows Langmuir adsorption isothermal curve. The chemical composition of the Q235 steel surface was analyzed through scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Furthermore, the possible corrosion inhibition mechanism of G211 on the surface of Q235 steel is proposed. This article not only presents an outstanding solution for safeguarding Q235 steel against corrosion but also introduces a feasible method for high-value utilization of monomer acid (MA).

6.
Appl Microbiol Biotechnol ; 108(1): 324, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713211

ABSTRACT

Laccase, a copper-containing polyphenol oxidase, is an important green biocatalyst. In this study, Laccase Lcc5 was homologous recombinantly expressed in Coprinopsis cinerea and a novel strategy of silencing chitinase gene expression was used to enhance recombinant Lcc5 extracellular yield. Two critical chitinase genes, ChiEn1 and ChiE2, were selected by analyzing the transcriptome data of C. cinerea FA2222, and their silent expression was performed by RNA interference (RNAi). It was found that silencing either ChiEn1 or ChiE2 reduced sporulation and growth rate, and increased cell wall sensitivity, but had no significant effect on mycelial branching. Among them, the extracellular laccase activity of the ChiE2-silenced engineered strain Cclcc5-antiChiE2-5 and the control Cclcc5-13 reached the highest values (38.2 and 25.5 U/mL, respectively) at 250 and 150 rpm agitation speeds, corresponding to productivity of 0.35 and 0.19 U/mL·h, respectively, in a 3-L fermenter culture. Moreover, since Cclcc5-antiChiE2-5 could withstand greater shear forces, its extracellular laccase activity was 2.6-fold higher than that of Cclcc5-13 when the agitation speed was all at 250 rpm. To our knowledge, this is the first report of enhanced recombinant laccase production in C. cinerea by silencing the chitinase gene. This study will pave the way for laccase industrial production and accelerate the development of a C. cinerea high-expression system. KEY POINTS: • ChiEn1 and ChiE2 are critical chitinase genes in C. cinerea FA2222 genome. • Chitinase gene silencing enhanced the tolerance of C. cinerea to shear forces. • High homologous production of Lcc5 is achieved by fermentation in a 3-L fermenter.


Subject(s)
Chitinases , Gene Silencing , Laccase , Chitinases/genetics , Chitinases/metabolism , Chitinases/biosynthesis , Laccase/genetics , Laccase/metabolism , Laccase/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Agaricales/genetics , Agaricales/enzymology , Fermentation , RNA Interference , Fungal Proteins/genetics , Fungal Proteins/metabolism , Mycelium/genetics , Mycelium/growth & development , Mycelium/enzymology , Cell Wall/metabolism , Cell Wall/genetics
7.
ACS Omega ; 9(20): 22186-22195, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38799369

ABSTRACT

Developing a highly efficient multifunctional epoxy adhesive is still an enormous challenge, which can rapidly cure at room temperature and has excellent low-temperature resistance performance and is crucial for the epoxy adhesive and electrical sealing fields during severe cold seasons. Herein, diglycidyl phthalate (DP) was synthesized with phthalic anhydride (PA) and epichlorohydrin (ECH) to enhance the curing rate and low-temperature resistance of bisphenol A diglycidyl ether (DGEBA) adhesive. The modified DP/DGEBA adhesives were systematically analyzed by gel time, mechanical properties, and aging resistance (time, temperature, and dry/wet treatment). The results showed that DP with highly active ester groups significantly accelerates the curing speed of DP/DGEBA. DP's rigid aromatic ring-benzene ring and flexible group-ester group gave the adhesive better low-temperature resistance. When the addition of DP was 10 wt % (based on the mass of DGEBA), the gel time of DP/DGEBA epoxy adhesives was reduced by 58 min compared to unmodified DGEBA epoxy adhesive, and after aging at low temperature (-20 °C) for 7 days, the tensile shear strengths of polyvinyl chloride (PVC) and aluminum plate increased by 76.2 and 80.6%, respectively. The results of non-isothermal curing kinetics and dynamic mechanical analysis suggested that when the amount of DP was 10 wt %, the reaction activation energy of DP/DGEBA epoxy adhesive decreased by 4.0%, and the cross-linking density increased by 8.9%. Moreover, the toughness of the modified adhesive was also improved. This study opens up a feasible way for the development of a low temperature-resistant epoxy adhesive cured rapidly at room temperature in practical application.

8.
Oncogene ; 43(25): 1900-1916, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38671157

ABSTRACT

The long-term maintenance of leukaemia stem cells (LSCs) is responsible for the high degree of malignancy in MLL (mixed-lineage leukaemia) rearranged acute myeloid leukaemia (AML). The DNA damage response (DDR) and DOT1L/H3K79me pathways are required to maintain LSCs in MLLr-AML, but little is known about their interplay. This study revealed that the DDR enzyme ATM regulates the maintenance of LSCs in MLLr-AML with a sequential protein-posttranslational-modification manner via CBP-DOT1L. We identified the phosphorylation of CBP by ATM, which confers the stability of CBP by preventing its proteasomal degradation, and characterised the acetylation of DOT1L by CBP, which mediates the high level of H3K79me2 for the expression of leukaemia genes in MLLr-AML. In addition, we revealed that the regulation of CBP-DOT1L axis in MLLr-AML by ATM was independent of DNA damage activation. Our findings provide insight into the signalling pathways involoved in MLLr-AML and broaden the understanding of the role of DDR enzymes beyond processing DNA damage, as well as identigying them as potent cancer targets.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , DNA Damage , Histone-Lysine N-Methyltransferase , Leukemia, Myeloid, Acute , Myeloid-Lymphoid Leukemia Protein , Signal Transduction , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , DNA Damage/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Signal Transduction/genetics , Animals , Mice , Cell Line, Tumor , Methyltransferases/metabolism , Methyltransferases/genetics , CREB-Binding Protein/metabolism , CREB-Binding Protein/genetics , Gene Rearrangement , Histones/metabolism , Histones/genetics , Phosphorylation , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Acetylation
9.
Biosensors (Basel) ; 14(4)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38667164

ABSTRACT

Raman flow cytometry (RFC) uniquely integrates the "label-free" capability of Raman spectroscopy with the "high-throughput" attribute of traditional flow cytometry (FCM), offering exceptional performance in cell characterization and sorting. Unlike conventional FCM, RFC stands out for its elimination of the dependency on fluorescent labels, thereby reducing interference with the natural state of cells. Furthermore, it significantly enhances the detection information, providing a more comprehensive chemical fingerprint of cells. This review thoroughly discusses the fundamental principles and technological advantages of RFC and elaborates on its various applications in the biomedical field, from identifying and characterizing cancer cells for in vivo cancer detection and surveillance to sorting stem cells, paving the way for cell therapy, and identifying metabolic products of microbial cells, enabling the differentiation of microbial subgroups. Moreover, we delve into the current challenges and future directions regarding the improvement in sensitivity and throughput. This holds significant implications for the field of cell analysis, especially for the advancement of metabolomics.


Subject(s)
Flow Cytometry , Spectrum Analysis, Raman , Humans , Neoplasms , Animals
10.
Analyst ; 149(11): 3169-3177, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38639189

ABSTRACT

Small extracellular vesicles (sEVs), a form of extracellular vesicles, are lipid bilayered structures released by all cells. Large-scale studies on sEVs from clinical samples are necessary, but a major obstacle is the lack of rapid, reproducible, efficient, and low-cost methods to enrich sEVs. Acoustic microfluidics have the advantage of being label-free and biocompatible, which have been reported to successfully enrich sEVs. In this paper, we present a highly efficient acoustic microfluidic trap that can offer low and large volume compatible ways of enriching sEVs from biological fluids by flexible structure design. It uses the idea of pre-loading larger seed particles in the acoustic trap to enable sub-micron particle capturing. The microfluidic chip is actuated using a piezoelectric plate transducer attached to a silicon-glass bonding plate with circular cavities. Each cavity works as a resonant unit, excited at the frequency of both the half wave resonance in the main plane and inverted quarter wave resonance in the depth direction, which has the ability to strongly trap seed particles at the center, thereby improving the subsequent nanoparticle capture efficiency. Mean trapping efficiencies of 35.62% and 64.27% were obtained using 60 nm and 100 nm nanobeads, respectively. By the use of this technology, we have successfully enriched sEVs from cell culture conditioned media and blood plasma at a flow rate of 10 µL min-1. The isolated sEV subpopulations are characterized by NTA and TEM, and their protein cargo is determined by WB. This acoustic trapping chip provides a rapid and robust method to enrich sEVs from biofluids with high reproducibility and sufficient quantities. Therefore, it can serve as a new tool for biological and clinical research such as cancer diagnosis and drug delivery.


Subject(s)
Acoustics , Extracellular Vesicles , Extracellular Vesicles/chemistry , Humans , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Nanoparticles/chemistry , Lab-On-A-Chip Devices , Culture Media, Conditioned/chemistry
11.
Int J Immunopathol Pharmacol ; 38: 3946320241249445, 2024.
Article in English | MEDLINE | ID: mdl-38679570

ABSTRACT

BACKGROUND AND OBJECTIVES: Metformin, an oral hypoglycemic drug, has been suggested to possess antitumour activity in several types of cancers. Additionally, interleukin-8 (IL-8) has been reported to be involved in the development and metastasis of many cancers. However, the effect of metformin on IL-8 expression in hepatocellular carcinoma (HCC) remains unclear. Therefore, this study aimed to investigate whether metformin could inhibit IL-8 expression to exert an inhibitory effect on HCC progression. MATERIALS AND METHODS: The IL-8 levels were measured in the plasma of 159 HCC patients (86 men, 73 women; average age 56 years) and in the culture supernatant of HCC cells (Hep3B and HuH7) using flow cytometry. In addition, the protein expression levels of IL-8 were also validated by the Human Protein Atlas (HPA) database. The prognostic value of IL-8 was evaluated using the Kaplan-Meier Plotter database. The association between IL-8 expression and immune checkpoints was estimated using the TIMER and The Cancer Genome Atlas (TCGA) databases. What's more, bioinformatics analysis, western blotting, and transwell assays were conducted to illustrate the molecular mechanism of metformin (≤1 mM) on IL-8 in HCC. RESULTS: IL-8 expression was found to be increased in the plasma of HCC patients, which is consistent with the expression of IL-8 in HCC cells and tissues. High expression of IL-8 was significantly related to poor prognosis. In addition, IL-8 was positively correlated with immune checkpoints in HCC. Notably, we found that low-dose metformin could inhibit the secretion of IL-8 by HCC cells and the migration of HCC cells. Mechanistically, low-dose metformin significantly suppresses HCC metastasis mainly through the AMPK/JNK/IL-8/MMP9 pathway. CONCLUSION: The results indicate that low-dose metformin can inhibit HCC metastasis by suppressing IL-8 expression. Targeting the AMPK/JNK/IL-8 axis may be a promising treatment strategy for patients with HCC metastasis.


Subject(s)
AMP-Activated Protein Kinases , Carcinoma, Hepatocellular , Interleukin-8 , Liver Neoplasms , Metformin , Humans , Metformin/pharmacology , Metformin/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Interleukin-8/metabolism , Interleukin-8/blood , Male , Female , Middle Aged , Cell Line, Tumor , AMP-Activated Protein Kinases/metabolism , Aged , Signal Transduction/drug effects , Cell Movement/drug effects , Neoplasm Metastasis , MAP Kinase Signaling System/drug effects , Hypoglycemic Agents/pharmacology
13.
Article in English | MEDLINE | ID: mdl-38551226

ABSTRACT

OBJECTIVES: This study aimed to investigate the association between negative aging stereotypes and goal pursuit in daily life among older adults. We also explored the roles of stereotype threat and stereotype challenge reactions in mediating this association. Additionally, this study investigated whether variations in these associations exist among older adults based on their self-integrity levels. METHODS: Participants were 100 older adults who completed daily measures assessing negative aging stereotype experiences, threat and challenge reactions, goal pursuit activities, and self-integrity over a week. RESULTS: More daily experiences of negative aging stereotypes were associated with greater avoidance of responsibilities in goal pursuit and less progress toward goals. Increased threat reactions and decreased challenge reactions were mediators of the association between stereotype experiences and avoidance of responsibilities, as well as that between stereotype experiences and progress toward goals, respectively. Moreover, the associations between threat reactions and avoidance of responsibilities as well as between stereotype experiences and challenge reactions were more pronounced in older adults with lower self-integrity levels. DISCUSSION: This study is pioneering in demonstrating the real-life interplay between aging stereotypes and goal pursuit among older adults. Its findings not only expand upon the literature concerning aging stereotypes, but also offer theoretical insights for the development of interventions aimed at goal pursuit. These insights have significant implications for fostering healthy aging.


Subject(s)
Aging , Goals , Stereotyping , Humans , Aged , Male , Female , Aging/psychology , Aged, 80 and over , Self Concept , Middle Aged
14.
J Agric Food Chem ; 72(12): 6236-6249, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38484389

ABSTRACT

Hypercholesterolemia poses a significant cardiovascular risk, particularly in postmenopausal women. The anti-hypercholesterolemic properties of Lactiplantibacillus plantarum ATCC8014 (LP) are well recognized; however, its improving symptoms on postmenopausal hypercholesterolemia and the possible mechanisms have yet to be elucidated. Here, we utilized female ApoE-deficient (ApoE-/-) mice undergoing bilateral ovariectomy, fed a high-fat diet, and administered 109 colony-forming units (CFU) of LP for 13 consecutive weeks. LP intervention reduces total cholesterol (TC) and triglyceride (TG) accumulation in the serum and liver and accelerates their fecal excretion, which is mainly accomplished by increasing the excretion of fecal secondary bile acids (BAs), thereby facilitating cholesterol conversion. Correlation analysis revealed that lithocholic acid (LCA) is an important regulator of postmenopausal lipid abnormalities. LP can reduce LCA accumulation in the liver and serum while enhancing its fecal excretion, accomplished by elevating the relative abundances of Allobaculum and Olsenella in the ileum. Our findings demonstrate that postmenopausal lipid dysfunction is accompanied by abnormalities in BA metabolism and dysbiosis of the intestinal microbiota. LP holds therapeutic potential for postmenopausal hypercholesterolemia. Its effectiveness in ameliorating lipid dysregulation is primarily achieved through reshaping the diversity and abundance of the intestinal microbiota to correct BA abnormalities.


Subject(s)
Gastrointestinal Microbiome , Hypercholesterolemia , Lactobacillus plantarum , Humans , Female , Mice , Animals , Hypercholesterolemia/metabolism , Bile Acids and Salts/metabolism , Postmenopause , Cholesterol/metabolism , Lactobacillus plantarum/metabolism , Liver/metabolism , Apolipoproteins E/metabolism , Mice, Inbred C57BL , Diet, High-Fat
15.
IEEE Trans Cybern ; PP2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526908

ABSTRACT

This article is concerned with the switched control of hybrid terrestrial and aerial quadrotors (HyTAQs) via stochastic hybrid fuzzy system methodology, in which the terrestrial and aerial mode switching is subject to a Markov process with lower-bounded sojourn time. For the first time, the bimodal nonlinear attitude dynamics of HyTAQs is analyzed and modeled based on the Takagi-Sugeno (T-S) fuzzy model, and switched fuzzy controllers are developed to stabilize the hybrid fuzzy system. The characteristic of state dimension switching caused by ground contact is modeled via the singular system presentation with mode-dependent singularity matrices, based on which numerically testable criteria of stability and stabilization in the stochastic sense are derived. Compared with the previous control approaches based on Markov jump systems, the proposed one is able to describe the deterministic dwelling duration in practice and integrate multiple subsystems with algebraic equations of different dimensions, while achieving lower conservatism. Illustrative examples are provided to demonstrate the effectiveness and potential of the designed variable-dimension fuzzy controllers.

16.
Sensors (Basel) ; 24(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38544113

ABSTRACT

Cruise ships and other naval vessels include automated Internet of Things (IoT)-based evacuation systems for the passengers and crew to assist them in case of emergencies and accidents. The technical challenges of assisting passengers and crew to safety during emergencies include various aspects such as sensor failures, imperfections in the sound or display systems that are used to direct evacuees, the timely selection of optimum evacuation routes for the evacuees, as well as computation and communication delays that may occur in the IoT infrastructure due to intense activities during an emergency. In addition, during an emergency, the evacuees may be confused or in a panic, and may make mistakes in following the directions offered by the evacuation system. Therefore, the purpose of this work is to analyze the effect of two important aspects that can have an adverse effect on the passengers' evacuation time, namely (a) the computer processing and communication delays, and (b) the errors that may be made by the evacuees in following instructions. The approach we take uses simulation with a representative existing cruise ship model, which dynamically computes the best exit paths for each passenger, with a deadline-driven Adaptive Navigation Strategy (ANS). Our simulation results reveal that delays in the evacuees' reception of instructions can significantly increase the total time needed for passenger evacuation. In contrast, we observe that passenger behavior errors also affect the evacuation duration, but with less effect on the total time needed to evacuate passengers. These findings demonstrate the importance of the design of passenger evacuation systems in a way that takes into account all realistic features of the ship's indoor evacuation environment, including the importance of having high-performance data processing and communication systems that will not result in congestion and communication delays.

17.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542439

ABSTRACT

This study aims to investigate the induction effect of LncRNA-CIR6 on MSC differentiation into cardiogenic cells in vitro and in vivo. In addition to pretreatment with Ro-3306 (a CDK1 inhibitor), LncRNA-CIR6 was transfected into BMSCs and hUCMSCs using jetPRIME. LncRNA-CIR6 was further transfected into the hearts of C57BL/6 mice via 100 µL of AAV9-cTnT-LncRNA-CIR6-ZsGreen intravenous injection. After three weeks of transfection followed by AMI surgery, hUCMSCs (5 × 105/100 µL) were injected intravenously one week later. Cardiac function was evaluated using VEVO 2100 and electric mapping nine days after cell injection. Immunofluorescence, Evans blue-TTC, Masson staining, FACS, and Western blotting were employed to determine relevant indicators. LncRNA-CIR6 induced a significant percentage of differentiation in BMSCs (83.00 ± 0.58)% and hUCMSCs (95.43 ± 2.13)% into cardiogenic cells, as determined by the expression of cTnT using immunofluorescence and FACS. High cTNT expression was observed in MSCs after transfection with LncRNA-CIR6 by Western blotting. Compared with the MI group, cardiac contraction and conduction function in MI hearts treated with LncRNA-CIR6 or combined with MSCs injection groups were significantly increased, and the areas of MI and fibrosis were significantly lower. The transcriptional expression region of LncRNA-CIR6 was on Chr17 from 80209290 to 80209536. The functional region of LncRNA-CIR6 was located at nucleotides 0-50/190-255 in the sequence. CDK1, a protein found to be related to the proliferation and differentiation of cardiomyocytes, was located in the functional region of the LncRNA-CIR6 secondary structure (from 0 to 17). Ro-3306 impeded the differentiation of MSCs into cardiogenic cells, while MSCs transfected with LncRNA-CIR6 showed a high expression of CDK1. LncRNA-CIR6 mediates the repair of infarcted hearts by inducing MSC differentiation into cardiogenic cells through CDK1.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Myocardial Infarction , Quinolines , RNA, Long Noncoding , Thiazoles , Animals , Mice , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Cell Differentiation/genetics , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Myocardial Infarction/genetics , Myocardial Infarction/therapy , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
18.
Clin Immunol ; 261: 109925, 2024 04.
Article in English | MEDLINE | ID: mdl-38310993

ABSTRACT

BACKGROUND: Inflammatory factors are being recognized as critical modulators of host antitumor immunity in liver cancer. We have previously shown that tumor cell-released LC3B positive extracellular vesicles (LC3B+ EVs) are responsible for malignant progression by dampening antitumor immunity. However, the relationship between LC3B+ EVs and inflammatory factors in the regulation of the liver cancer microenvironment remains unclear. METHODS: Flow cytometry analyses were performed to examine the panel of 12 cytokines, the main source of positive cytokines, and plasma LC3B+ EVs carrying HSP90α in peripheral blood of liver cancer patients. We correlated the levels of plasma IL-6, IL-8 with LC3B+ EVs carrying HSP90α and with prognosis. In vitro culture of healthy donor leukocytes with liver cancer-derived LC3B+ EVs was performed to evaluate the potential effect of blocking HSP90α, IL-6 or IL-8 alone or in combination with PD-1 inhibitor on CD8+ T cell function. We also investigated the potential associations of MAP1LC3B, HSP90AA1, IL6 or IL8 with immunotherapy efficacy using the TCGA databases. RESULTS: In liver cancer patients, plasma IL-6 and IL-8 levels were significantly higher than in healthy controls and associated with poor clinical outcome. In peripheral blood, levels of plasma LC3B+ EVs carrying HSP90α were significantly elevated in HCC patients and positively associated with IL-6 and IL-8 levels, which are predominantly secreted by monocytes and neutrophils. Moreover, LC3B+ EVs from human liver cancer cells promoted the secretion of IL-6 and IL-8 by leukocytes through HSP90α. Besides, we show that the cytokines IL-6 and IL-8 secreted by LC3B+ EVs-induced leukocytes were involved in the inhibition of CD8+ T-cell function, while blockade of the HSP90α on the LC3B+ EVs, IL-6, or IL-8 could enhance anti-PD-1-induced T cell reinvigoration. Finally, patients who received anti-PD-1/PD-L1 immunotherapy with high MAP1LC3B, HSP90AA1, IL6, or IL8 expression had a lower immunotherapy efficacy. CONCLUSIONS: Our data suggest that liver cancer-derived LC3B+ EVs promote a pro-oncogenic inflammatory microenvironment by carrying membrane-bound HSP90α. Targeting HSP90α on the LC3B+ EVs, IL-6, or IL-8 may synergize with anti-PD-1 treatment to enhance the CD8+ T-cell functions, which may provide novel combination strategies in the clinic for the treatment of liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Extracellular Vesicles , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/therapy , Interleukin-6/metabolism , Interleukin-8/metabolism , Liver Neoplasms/drug therapy , Tumor Microenvironment , Cytokines/metabolism , Immunotherapy , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology
19.
Cytokine ; 177: 156555, 2024 05.
Article in English | MEDLINE | ID: mdl-38387232

ABSTRACT

Interferon-alpha (IFN-α) is widely used in the clinical treatment of patients with chronic hepatitis B and hepatocellular carcinoma (HCC). However, high levels of CXCL8 are associated with resistance to IFN-α therapy and poorer prognosis in advanced cancers. In this study, we investigated whether IFN-α could directly induce the production of CXCL8 in HCC cells and whether CXCL8 could antagonize the antitumor activity of IFN-α. We found that IFN-α not only upregulated the expression of the inducible genes CXCL9, CXCL10, CXCL11 and PD-L1, but also significantly stimulated CXCL8 secretion in HCC cells. Mechanically, IFN-α induces CXCL8 expression by activating the AKT and JNK pathways. In addition, our results demonstrate that IFN-α exposure significantly increases the differentiation of HCC stem cells, but this effect is reversed by the addition of the CXCL8 receptor CXCR1/2 inhibitor Reparixin and STAT3 inhibitor Stattic. Besides, our study reveals that the cytokine CXCL8 secreted by IFN-α-induced HCC cells inhibits T-cell function. Conversely, inhibition of CXCL8 promotes TNF-α and IFN-γ secretion by T cells. Finally, liver cancer patients who received anti-PD-1/PD-L1 immunotherapy with high CXCL8 expression had a lower immunotherapy efficacy. Overall, our findings clarify that IFN-α triggers immunosuppression and cancer stem cell differentiation in hepatocellular carcinoma by upregulating CXCL8 secretion. This discovery provides a novel approach to enhance the effectiveness of HCC treatment in the future.


Subject(s)
Carcinoma, Hepatocellular , Interferon-alpha , Interleukin-8 , Liver Neoplasms , Humans , B7-H1 Antigen/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Differentiation , Immunosuppression Therapy , Interferon-alpha/pharmacology , Interferon-gamma/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Interleukin-8/metabolism
20.
Adv Mater ; 36(26): e2311784, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38277506

ABSTRACT

High-performance multifunctional nanocoatings not only protect and enhance substrate materials but also offer additional functionalities. This demands a sophisticated coordination of the coating's inherent properties and microstructural features. Here, a multifunctional active nanocoating via meta-structural engineering of covalent organic framework (COF) deposition materials is presented. This COF nanocoating, characterized by well-defined micropores (1-2 nm), meta-structured textures (30-300 nm), tailored thickness (100-300 nm), and good uniformness, showcases a unique combination of angle-independent structural coloration and ultrafast responsiveness to gaseous stimuli. Remarkably, it demonstrates good compatibility with a wide range of inert substrate materials, from rigid ones like glass and metal to flexible elastomers and nanomaterial films of various shapes and sizes. This versatility enables the facile development of devices that can optically report information about their environments. Examples include chemically active coatings with ultrafast (≈10 ms) color-changing behaviors and programmable actuation behaviors upon exposure to gaseous stimuli, and mechanically active coatings that can detect substrate strain up to 50% yet maintain structural robustness and consistent coloration hue. It is believed that meta-structural engineering of COF nanocoatings on inert substrates can enable them to respond to environmental stimuli, potentially indicating a new trend in developing multifunctional materials and smart devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...