Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 67: 65-76, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28867282

ABSTRACT

Increasing evidence indicates that inflammatory processes play a crucial role in the etiopathology of epilepsy and seizure disorders. The Toll/IL-1R domain-containing adapter-inducing IFN-ß (TRIF) activated several transcriptions leading to the production of pro-inflammatory cytokines in the central nervous system, which suggests a potential role for TRIF in the epileptogenesis of epilepsy. In this study, we investigated the roles of TRIF in human and mice epileptogenic tissues. Western blot and immunohistochemistry assays showed that the expression of TRIF was significantly upregulated in neurons and glial cells in both human epileptic tissues and mouse models, and positively correlated with seizure frequency. TRIF expression positively correlated with high-mobility group box 1 (HMGB1) expression. In TRIF-deficient mice, electroencephalograms displayed a significant decrease in seizure frequency and duration time, while KA induced seizures compared with wild-type (WT) mice. The number and duration time of spontaneous seizures were also decreased in the chronic KA-induced TRIF-deficient mouse models. In TLR4-deficient hippocampal neurons and mouse models, TRIF expression was lower compared with WT mice during HMGB1 and KA stimulation. Meanwhile, in KA-induced TRIF-deficient mouse models, microglia activation was significantly suppressed; pro-inflammatory factors including IL-1ß, TNF-α, iNOS, HMGB1 and IFN-ß were reduced; and the survival of the neurons in the hippocampus increased compared with WT mice. Our findings suggested that TRIF may be involved in the epileptogenesis of temporal lobe epilepsy, which would make it a potential therapeutic target for the treatment of epilepsy.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Epilepsy, Temporal Lobe/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Adolescent , Adult , Animals , Child , Encephalitis/metabolism , Female , HMGB1 Protein/metabolism , Hippocampus/metabolism , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Middle Aged , Pyramidal Cells/metabolism , Temporal Lobe/metabolism , Toll-Like Receptor 4/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...