Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13480, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866837

ABSTRACT

The long-term trends in maternal and child health (MCH) in China and the national-level factors that may be associated with these changes have been poorly explored. This study aimed to assess trends in MCH indicators nationally and separately in urban and rural areas and the impact of public policies over a 30‒year period. An ecological study was conducted using data on neonatal mortality rate (NMR), infant mortality rate (IMR), under-five mortality rate (U5MR), and maternal mortality ratio (MMR) nationally and separately in urban and rural areas in China from 1991 to 2020. Joinpoint regression models were used to estimate the annual percentage changes (APC), average annual percentage changes (AAPC) with 95% confidence intervals (CIs), and mortality differences between urban and rural areas. From 1991 to 2020, maternal and child mortalities in China gradually declined (national AAPC [95% CI]: NMRs - 7.7% [- 8.6%, - 6.8%], IMRs - 7.5% [- 8.4%, - 6.6%], U5MRs - 7.5% [- 8.5%, - 6.5%], MMRs - 5.0% [- 5.7%, - 4.4%]). However, the rate of decline nationally in child mortality slowed after 2005, and in maternal mortality after 2013. For all indicators, the decline in mortality was greater in rural areas than in urban areas. The AAPCs in rate differences between rural and urban areas were - 8.5% for NMRs, - 8.6% for IMRs, - 7.7% for U5MRs, and - 9.6% for MMRs. The AAPCs in rate ratios (rural vs. urban) were - 1.2 for NMRs, - 2.1 for IMRs, - 1.7 for U5MRs, and - 1.9 for MMRs. After 2010, urban‒rural disparity in MMR did not diminish and in NMR, IMR, and U5MR, it gradually narrowed but persisted. MCH indicators have declined at the national level as well as separately in urban and rural areas but may have reached a plateau. Urban‒rural disparities in MCH indicators have narrowed but still exist. Regular analyses of temporal trends in MCH are necessary to assess the effectiveness of measures for timely adjustments.


Subject(s)
Child Health , Child Mortality , Infant Mortality , Maternal Health , Maternal Mortality , Rural Population , Urban Population , Humans , China/epidemiology , Child Health/trends , Female , Infant , Maternal Health/trends , Infant Mortality/trends , Child, Preschool , Child Mortality/trends , Maternal Mortality/trends , Child , Infant, Newborn , Male
2.
J Phys Chem B ; 127(5): 1074-1088, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36705662

ABSTRACT

Proline cis/trans isomerization governs protein local conformational changes via its local mechanical rigidity. The amyloid-disrupting capacity of proline is widely acknowledged; however, the molecular mechanism is still not clear. To understand how proline residues in polypeptide chains influence amyloid propensity, we study several truncated sequences of the TDP-43 C-terminal region (287-322) and their triple proline variants (308PPP310). We use coarse-grained molecular simulation to study the time evolution of the process of aggregation in the early stages in an effective high-concentration condition (∼25 mM). This ensures the long time scales for protein association at laboratory concentrations. We use several experimentally determined structure templates as initial structures of monomer conformations. We carry out oligomer size analysis and cluster analysis, along with several structural measures, to characterize the size distributions of oligomers and their morphological/structural properties. We show that average oligomer size is not a good indicator of amyloid propensity. Structural order and/or morphological properties are better alternatives. We show that proline variants can efficiently maintain the formation of large "ordered" oligomers of shorter truncated sequences, i.e., 307-322. This "order" maintenance is weakened when using longer truncated sequences (i.e., 287-322), leading to the formation of "disordered" oligomers. From an energy trade-off perspective, if the entropic effect is weak (short sequence length), the shape-complementarity of proline variants effectively guides the oligomerization process to form "ordered" oligomer intermediates. This leads to a distinct aggregation pathway that promotes amyloid formation (on-pathway). Strong entropic effects (long sequence length), however, would cause the formation of "disordered" oligomers. This in turn will suppress amyloid formation (off-pathway). The proline shape-complementary effects provide a guided morphological restraint to facilitate the pathways of amyloid formation. Our study supports the importance of structure-based kinetic heterogeneity of prion-like sequence fragments in driving different aggregation pathways. This work sheds light on the role of morphological and structural order of early-stage oligomeric species in regulating amyloid-disrupting capacity by prolines.


Subject(s)
Prions , Prions/chemistry , Proline/chemistry , Peptides/chemistry , Amyloid/chemistry , Amyloidogenic Proteins
3.
Front Mol Biosci ; 9: 944884, 2022.
Article in English | MEDLINE | ID: mdl-35795826

ABSTRACT

[This corrects the article DOI: 10.3389/fmolb.2021.719320.].

4.
Front Mol Biosci ; 8: 719320, 2021.
Article in English | MEDLINE | ID: mdl-34422910

ABSTRACT

Amyloid peptides are known to self-assemble into larger aggregates that are linked to the pathogenesis of many neurodegenerative disorders. In contrast to primary nucleation, recent experimental and theoretical studies have shown that many toxic oligomeric species are generated through secondary processes on a pre-existing fibrillar surface. Nucleation, for example, can also occur along the surface of a pre-existing fibril-secondary nucleation-as opposed to the primary one. However, explicit pathways are still not clear. In this study, we use molecular dynamics simulation to explore the free energy landscape of a free Abeta monomer binding to an existing fibrillar surface. We specifically look into several potential Abeta structural precursors that might precede some secondary events, including elongation and secondary nucleation. We find that the overall process of surface-dependent events can be described at least by the following three stages: 1. Free diffusion 2. Downhill guiding 3. Dock and lock. And we show that the outcome of adding a new monomer onto a pre-existing fibril is pathway-dependent, which leads to different secondary processes. To understand structural details, we have identified several monomeric amyloid precursors over the fibrillar surfaces and characterize their heterogeneity using a probability contact map analysis. Using the frustration analysis (a bioinformatics tool), we show that surface heterogeneity correlates with the energy frustration of specific local residues that form binding sites on the fibrillar structure. We further investigate the helical twisting of protofilaments of different sizes and observe a length dependence on the filament twisting. This work presents a comprehensive survey over the properties of fibril growth using a combination of several openMM-based platforms, including the GPU-enabled openAWSEM package for coarse-grained modeling, MDTraj for trajectory analysis, and pyEMMA for free energy calculation. This combined approach makes long-timescale simulation for aggregation systems as well as all-in-one analysis feasible. We show that this protocol allows us to explore fibril stability, surface binding affinity/heterogeneity, as well as fibrillar twisting. All these properties are important for understanding the molecular mechanism of surface-catalyzed secondary processes of fibril growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...