Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 270(Pt 2): 132403, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754660

ABSTRACT

This study presents the synthesis of Hec-g@PS through the innovative surface modification of hectorite via photocatalytic atom transfer radical polymerization (ATRP). Then, PLA/Hec-g@PS nanocomposites films was prepared with Hec-g@PS as additives by blown molding technique. Furthermore, the thermal degradation kinetics and crystallization kinetics during the thermal degradation of PLA based nanocomposites films were investigated with simultaneous rheology and FTIR technology. The findings indicated that the activation energies for PLA and PLA/Hec-g@PS were -54,702.12 J/mol and -107,963.47 J/mol, respectively, demonstrating that Hec-g@PS substantially influenced PLA thermal stability. Additionally, while the crystallization rates of PLA based films decreased with rising degradation temperatures. Quantum chemical calculations revealed that the mode of interaction between Hec-g@PS and PLA was mainly dominated by dispersion, supplemented by electrostatic and induced interactions of -22.2103 kcal/mol, -16.0779 kcal/mol and -5.4954 kcal/mol, respectively. The combination of crystallization kinetics and quantum chemical calculations further confirmed that Hec-g@PS promoted the alignment of PLA molecular chains due to the enhanced interaction force between them. Hec-g@PS functioned as a nucleating agent, facilitating PLA crystallization and effectively mitigated its thermal degradation. Hec-g@PS as a nucleating agent provides valuable insights into the potential application prospects of biodegradable materials, particularly in the fields of biomedicine and packaging.


Subject(s)
Crystallization , Nanocomposites , Polyesters , Rheology , Polyesters/chemistry , Nanocomposites/chemistry , Spectroscopy, Fourier Transform Infrared , Kinetics , Temperature , Silicates/chemistry
2.
J Org Chem ; 89(10): 6892-6902, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38701335

ABSTRACT

A computational study is reported here on the mechanism of tetrahydrofuran (THF)-diol formation from the Os(VI)-catalyzed oxidative cyclization of 5,6-dihydroxyalkene ligated with citric acid and in the presence of BroÌ·nsted acid. Initiated by Os(VI) dioxo citrate formation, coordination of co-oxidant pyridine-N-oxide (PNO) and protonation of its oxo group generate the active catalyst. The catalytic cycle commences through successive steps, including dihydroxyalkene addition to the active catalyst in a concerted mechanism to form hexacoordinated alkoxy-protonated PNO-complexed Os(VI) bisglycolate as a turnover-limiting step (TLS), cyclization to Os(IV) THF-diolate, reoxidation to Os(VI) THF-diolate, and hydrolysis via a dissociative mechanism to furnish the THF-diol and regenerate the active species, sustaining the catalytic cycle through an Os(VI)/Os(IV) cycle. Despite the overall exergonic nature of catalytic cycle (ΔGrcycle = -45.0 kcal/mol), the TLS is accelerated by the formation of an open-valence 16-electron Os(VI) intermediate but decelerated by the undesired formation of a saturated/hexacoordinate 18-electron Os(VI) intermediate. BroÌ·nsted acid plays crucial roles in the formation of Os(VI) citrate and the active catalyst, impediment of the second cycle, and the cyclization step. Additionally, besides its role as a co-oxidant, and in the presence of acid, PNO is found to assist the insertion of dihydroxyalkene and, importantly, in releasing the THF-diol to regenerate the active intermediate.

3.
J Org Chem ; 89(5): 3430-3440, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38375633

ABSTRACT

Ag(I) salts have demonstrated superior catalytic activity in the cubane-cuneane rearrangement. This research presents a comprehensive mechanistic investigation using high-level computations. The reaction proceeds via oxidative addition (OA) of Ag(I) to the C-C bond, followed by C-Ag bond cleavage and subsequent dynamically concerted carbocation rearrangement. The OA of Ag(I) exhibits significant more electrophilic nature than classical transition metal-induced OA, and the superior catalytic activity of Ag(I) is attributed to the accessibility of a highly electrophilic "bare" Ag+ center and a relatively weak Ag-C bond. However, the highly Lewis acidic nature of the Ag(I) center limits the substrate scope. To address this problem, ligand and counteranion screening was conducted, revealing that chiral biarylether ligands in combination with BF4- as the counteranion offer both enhanced reactivity and improved chemoselectivity while suppressing the Lewis acidity. Additionally, quasi-classical molecular dynamics simulations indicate the possibility of a novel desymmetrization pathway through post-transition-state dynamics in the biarylether-Ag(I)-BF4- system, thereby providing a potential avenue for enantioselective cuneane synthesis.

4.
Int J Biol Macromol ; 254(Pt 1): 127676, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38287582

ABSTRACT

Poly(lactic acid) (PLA) has its own limitations in terms of slow crystallization rate and low crystallinity during processing, resulting in poor toughness and thermal stability, which seriously restricts the practical application of PLA. Blending nanoparticles into the PLA matrix is an effective way to improve PLA crystallization. In this study, carbon dots (CDs) were prepared by green oxidation using weathered coal as carbon source and then surface-modified with dodecylamine (DDA) and octadecylamine (ODA). Modified CDs (MCDs)/PLA composite films were prepared using MCDs as filler to improve the crystallinity and toughness of PLA films. The results showed that the improvement effect of ODA-modified CDs (ODACDs) was better than that of DDA-modified CDs (DDACDs). The crystallinity of PLA composite film (0.05 wt% ODACDs) was increased from 7.20% (pure PLA film) to 35.44%, and its elongation at break was increased by 5.01 times compared with that of the pure PLA film. Moreover, thermogravimetric analysis suggested that the thermal stability of MCDs/PLA films was also improved. The results of simultaneous rheology and in-situ FTIR analysis as well as molecular dynamics simulations confirmed that MCDs had a strong interaction with PLA molecules, which promoted the crystallization of PLA film, thereby improving its toughness and thermal stability.


Subject(s)
Nanoparticles , Polyesters , Polyesters/chemistry , Nanoparticles/chemistry , Crystallization
5.
J Org Chem ; 89(1): 224-232, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38100374

ABSTRACT

The mechanism of the Pb(IV)-promoted phenol oxidative dearomatization reaction has been traditionally attributed to a carbocation mechanism. In 2011, Pettus reported an oxidative dearomatization reaction leading to a mixture of a formal [5 + 2] and a C-O bond formation product. By employing density functional theory and quasi-molecular dynamics calculations, it was demonstrated that the reaction does not occur through a carbocation intermediate but instead proceeds through an addition-coupled electron transfer (ACET) mechanism. Moreover, the ACET exhibits ambimodality, wherein a transition state results in 4-6 distinct outcomes through post-TS bifurcation. The reported selectivity can be effectively rationalized by a newly proposed mechanism.

6.
J Am Chem Soc ; 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36756850

ABSTRACT

Maleimide-cysteine chemistry has been a routine practice for the site-specific labeling of fluorophores to proteins since the 1950s. This approach, however, cannot bring out the best photon budget of fluorophores. Here, we systematically measured the Cyanine3/5 dye conjugates via maleimide-thiol and amide linkages by counting the total emitted photons at the single-molecule level. While brightness and signal-to-noise ratios do not change significantly, dyes with thioether linkages exhibit more severe photobleaching than amide linkers. We then screened modern arylation-type bioconjugation strategies to alleviate this damage. Labeling thiols with phenyloxadiazole (POD) methyl sulfone, p-chloronitrobenzene, and fluorobenzene probes gave rise to electron-deficient aryl thioethers, effectively increasing the total emitted photons by 1.5-3 fold. Among the linkers, POD maintains labeling efficiency and specificity that are comparable to maleimide. Such an increase has proved to be universal among bulk and single-molecule assays, with or without triplet-state quenchers and oxygen scavengers, and on conformationally unrestricted or restricted cyanines. We demonstrated that cyanine-POD conjugates are general and superior fluorophores for thiol labeling in single-molecule FRET measurements of biomolecular conformational dynamics and in two-color STED nanoscopy using site-selectively labeled nanobodies. This work sheds light on the photobleaching mechanism of cyanines under single-molecule imaging while highlighting the interplay between the protein microenvironment, bioconjugation chemistry, and fluorophore photochemistry.

7.
Phys Chem Chem Phys ; 25(4): 3110-3120, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36621824

ABSTRACT

The pincer-Co catalyzed nitrile hydroboration of nitrile has been presented as an elegant strategy to afford amine synthesis; however, ligand engineering is required. We show here a strategy to tune the catalytic behavior of the organometallic catalyst, as an alternative approach to ligand engineering, by means of computational investigations to understand the effect of partners such as (18-crown-6)K+, W(CO)3 and W(PMe3)3 on the reactivity of the pincer-Co catalyzed nitrile hydroboration reaction through π-coordination to the ligand aromatic ring. The extra additives bind the central phenyl ring of the ligand by either dispersion or chemical bonding. The electron-richness of the cobalt center is tuned by the partner, and follows the order (18-crown-6)K+ > W(PMe3)3 > no partner > W(CO)3. While the influence of the covalent W-containing partners parallels the electron-richness of the W, the non-covalent partner, (18-crown-6)K+, surprisingly increases the donor ability of the pincer ligand through the polarization effect. All the elementary steps involved in the nitrile hydroboration reaction are influenced by the partner, and the overall barrier is lowered by a surprisingly large amount of 4.9 kcal mol-1 in the presence of (18-crown-6)K+, suggesting a notable partner effect to be explored by experimentalists so that the reactivity of a catalyst can be tuned without ligand modification.

8.
Sci Adv ; 8(40): eadd5678, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36206342

ABSTRACT

Numerous efforts are being made toward constructing artificial nanopockets inside heterogeneous catalysts to implement challenging reactions that are difficult to occur on traditional heterogeneous catalysts. Here, the enzyme-mimetic nanopockets are fabricated inside the typical UiO-66 by coordinating zirconium nodes with terephthalate (BDC) ligands and monocarboxylate modulators including formic acid (FC), acetic acid (AC), or trifluoroacetic acid (TFA). When used in transfer hydrogenation of alkyl levulinates with isopropanol toward γ-valerolactone (GVL), these modulators endow zirconium sites with enhanced activity and selectivity and good stability. The catalytic activity of UiO-66FC is ~30 times that of UiO-66, also outperforming the state-of-the-art heterogeneous catalysts. Distinct from general consensus on electron-withdrawing or electron-donating effect on the altered activity of metal centers, this improvement mainly originates from the conformational change of modulators in the nanopocket to assist forming the rate-determining six-membered ring intermediate at zirconium sites, which are stabilized by van der Waals force interactions.

9.
J Org Chem ; 87(1): 531-539, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34910501

ABSTRACT

Although palladium-catalyzed aryl-nitro bond activation reaction has recently gained a lot of interest, it still requires rather harsh conditions. We here systematically explore the substituent effect on oxidative addition steps, known as the rate-determining step, by density functional theory simulations based on a Nakao's nitrogen heterocyclic carbene (NHC) ligand. The key aryl ring on the catalyst, ring A, acts as a π-donor and stabilizes the palladium center of the transition state, and thus an electron-rich ring A is expected to lower the barrier. However, the polarization and electrostatic effects were shown to be more important, although they were often ignored before. These effects originate from through-space interaction with a nitro group in the resting state, and the overall effect is that any polarizable or partly negative group near ortho- or meta-site of ring A is harmful for the reaction. Based on these discoveries, we proposed a list of guidelines for successful ligand developments and designed several new ligands. These ligands exhibit a significantly lower barrier than the reported Nakao's ligand by as large as ∼5 kcal/mol, in both gas phase and solvent with a moderate dipole. These candidates will promote further experimental studies and enhance the ability to improve ligands in a rational and predictive manner.


Subject(s)
Electronics , Palladium , Catalysis , Ligands , Static Electricity
10.
J Org Chem ; 83(23): 14646-14657, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30418773

ABSTRACT

We explored the mechanism of Markovnikov-selective hydrosilylation of phenylacetylene catalyzed by N-N-N Pincer-cobalt complex with density functional theory (DFT) calculations. In contrast to the previously proposed Co(I) mechanism, computational results suggest a Co(0) pathway, which is further supported by experimental studies. At the same time, our study reveals unexpected complexity in terms of the origin of regioselectivity. First, different orientations between the phenyl group in the substrate and the ligand plane lead to two possible transition states responsible for the branched product. However, the favored one varies according to ligand substitution pattern. Second, both entropy and solvation effects (rather than the conventional approach that considers electronic energies) have to be considered to explain regioselectivity, where the dominant factor also varies from case to case. Despite this complexity, computations predict a general overall ligand structure-regioselectivity relationship. In addition to increasing steric hindrance, introduction of an electron-withdrawing group to the ligands will also increase regioselectivity, which unveils a new dimension of ligand design.

SELECTION OF CITATIONS
SEARCH DETAIL
...