Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol J ; 19(6): e2400290, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900053

ABSTRACT

Synthetic biology is contributing to the advancement of the global net-negative carbon economy, with emphasis on formate as a member of the one-carbon substrate garnering substantial attention. In this study, we employed base editing tools to facilitate adaptive evolution, achieving a formate tolerance of Yarrowia lipolytica to 1 M within 2 months. This effort resulted in two mutant strains, designated as M25-70 and M25-14, both exhibiting significantly enhanced formate utilization capabilities. Transcriptomic analysis revealed the upregulation of nine endogenous genes encoding formate dehydrogenases when cultivated utilizing formate as the sole carbon source. Furthermore, we uncovered the pivotal role of the glyoxylate and threonine-based serine pathway in enhancing glycine supply to promote formate assimilation. The full potential of Y. lipolytica to tolerate and utilize formate establishing the foundation for pyruvate carboxylase-based carbon sequestration pathways. Importantly, this study highlights the existence of a natural formate metabolic pathway in Y. lipolytica.


Subject(s)
Formates , Yarrowia , Yarrowia/genetics , Yarrowia/metabolism , Formates/metabolism , Metabolic Engineering/methods , Metabolic Networks and Pathways/genetics , Formate Dehydrogenases/genetics , Formate Dehydrogenases/metabolism , Directed Molecular Evolution , Glyoxylates/metabolism , Gene Editing
2.
ACS Omega ; 8(49): 46934-46945, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38107954

ABSTRACT

Eco-friendly self-doped carbon quantum dots (ZCQDs) with excellent corrosion inhibition ability were prepared via solid-phase pyrolysis only using Zanthoxylum bungeanum leaves as the raw material. Compared with the relevant research, a simpler and higher yield (25%) preparation process for carbon quantum dots was proposed. ZCQDs were characterized by transmission electron microscopy and X-ray photoelectron spectroscopy, and the average size of ZCQDs with multitudes of O- and N-containing functional groups was about 2.53 nm. The prepared ZCQDs were used to inhibit the corrosion of Q235 steel in HCl solution, and the inhibition behavior was investigated through weight loss, electrochemical test, surface analysis, and adsorption thermodynamic analyses. The results showed that the ZCQDs, acted as a mixed corrosion inhibitor, have an effective corrosion inhibition for Q235, the corrosion inhibition efficiency reached 95.98% at 200 mg/L, and at this concentration, effective protection of at least 132h (IE > 90%) is provided. Moreover, the adsorption mechanism of ZCQDs was consistent with that of Redlich-Peterson adsorption, including chemisorption and physisorption. A new corrosion inhibition mechanism of ZCQDs has been thoroughly studied and proposed; ZCQDs have functional groups containing O and N, which can form a protective barrier through physical adsorption and chemisorption, but the coverage of the protective film is low at low concentrations. With the increase of concentration, the protective film formed by ZCQDs on the metal surface will first increase the coverage and then adsorb more ZCQDs on the protective film to form a thicker and denser protective film to protect the metal. The carbon quantum dots prepared in this paper have advantages including a green, renewable precursor, a fast method, high yield, and excellent corrosion inhibition. Therefore, this work can inspire and facilitate, to a certain extent, the future application of doped carbon quantum dots as efficient corrosion inhibitors in HCl solutions.

3.
Appl Microbiol Biotechnol ; 105(21-22): 8561-8573, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34661706

ABSTRACT

Given the grave concerns over increasing consumption of petroleum resources and dramatic environmental changes arising from carbon dioxide emissions worldwide, microbial biosynthesis of fatty acid ethyl ester (FAEE) biofuels as renewable and sustainable replacements for petroleum-based fuels has attracted much attention. As one of the most important microbial chassis, the nonconventional oleaginous yeast Yarrowia lipolytica has emerged as a paradigm organism for the production of several advanced biofuels and chemicals. Here, we report the engineering of Y. lipolytica for use as an efficient dual biocatalytic system for in situ and one-pot production of FAEEs from renewable feedstock. Compared to glucose with 5.7% (w/w) conversion rate to FAEEs, sunflower seed oil in the culture medium was efficiently used to generate FAEEs with 84% (w/w) conversion rate to FAEEs by the engineered Y. lipolytica strain GQY20 that demonstrates an optimized intercellular heterologous FAEE synthesis pathway. In particular, the titer of extracellular FAEEs from sunflower seed oil reached 9.9 g/L, 10.9-fold higher than that with glucose as a carbon source. An efficient dual biocatalytic system combining ex vivo and strengthened in vitro FAEE production routes was constructed by overexpression of a lipase (Lip2) variant in the background strain GQY20, which further increased FAEEs levels to 13.5 g/L. Notably, deleting the ethanol metabolism pathway had minimal impact on FAEE production. Finally, waste cooking oil, a low-cost oil-based substance, was used as a carbon source for FAEE production in the Y. lipolytica dual biocatalytic system, resulting in production of 12.5 g/L FAEEs. Thus, the developed system represents a promising green and sustainable process for efficient biodiesel production. KEY POINTS: • FAEEs were produced by engineered Yarrowia lipolytica. • A Lip2 variant was overexpressed in the yeast to create a dual biocatalytic system. • Waste cooking oil as a substrate resulted in a high titer of 12.5 g/L FAEEs.


Subject(s)
Yarrowia , Biofuels , Esters , Fatty Acids , Metabolic Engineering , Yarrowia/genetics
4.
Food Environ Virol ; 8(1): 18-26, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26501200

ABSTRACT

Escherichia phage CICC 80001 was isolated from the bacteriophage contaminated medium of an Escherichia coli strain HY-05C (CICC 11022S) which could produce L-aspartic acid. The phage had a head diameter of 45-50 nm and a tail of about 10 nm. The one-step growth curve showed a latent period of 10 min and a rise period of about 20 min. The average burst size was about 198 phage particles per infected cell. Tests were conducted on the plaques, multiplicity of infection, and host range. The genome of CICC 80001 was sequenced with a length of 38,810 bp, and annotated. The key proteins leading to host-cell lysis were phylogenetically analyzed. One protein belonged to class II holin, and the other two belonged to the endopeptidase family and N-acetylmuramoyl-L-alanine amidase family, respectively. The genome showed the sequence identity of 82.7% with that of Enterobacteria phage T7, and carried ten unique open reading frames. The bacteriophage resistant E. coli strain designated CICC 11021S was breeding and its L-aspartase activity was 84.4% of that of CICC 11022S.


Subject(s)
Aspartic Acid/metabolism , Bacteriophages/isolation & purification , Escherichia coli/virology , Genome, Viral , Bacteriophages/classification , Bacteriophages/genetics , Base Sequence , Escherichia coli/genetics , Escherichia coli/metabolism , Molecular Sequence Data , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...