Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 102(7): 102701, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37150176

ABSTRACT

Vitamin A is a fat-soluble vitamin that is a crucial mediator of the immune system. In this study, we evaluated the effect of oral vitamin A supplementation on host immune responses to infectious bronchitis virus (IBV) infection in chickens. Forty 1-day-old specific pathogen-free (SPF) chickens were fed a basal diet and randomly divided into 2 groups (n = 20 birds per group). Chickens in the experimental group were treated orally with vitamin A (dissolved in 0.1 mL soybean oil, at a dose of 8,000 IU per kg diet) daily. Birds in the control group were orally administered 0.1 mL soybean oil without vitamin A until 21 d of age. On d 21 after birth, all chickens were infected with 0.1 mL of 106.5 50% median embryo infectious dose of a pathogenic IBV strain (CK/CH/LDL/091022) by intraocular and intranasal routes. The results demonstrated that oral vitamin A supplementation did not affect the clinical course of disease and growth performance of SPF chickens. However, vitamin A supplementation increased the IBV-specific IgG serum levels and decreased the viral load in some tissues of IBV-infected chickens. In addition, the results demonstrated that vitamin A supplementation decreased the expression levels of most immune-related molecules in some tissues of IBV-infected chickens. Vitamin A supplementation decreased the mRNA expression levels of some avian ß-defensins (AvBD2, 3, 6, 7, 11, and 13) and increased the expression levels of AvBD9 and AvBD12 in some tissues of IBV-infected chickens. Similarly, vitamin A supplementation decreased the mRNA expression levels of some cytokines (interferon-γ, interleukin-1ß [IL-1ß], and IL-6) and increased the mRNA expression levels of IL-2 in some tissues of IBV-infected chickens. Furthermore, vitamin A supplementation decreased the mRNA expression levels of myeloid differentiation primary response protein 88, nuclear factor-κB p65, toll-like receptor 3, toll-like receptor 7, and CD4. In summary, the present study suggests that vitamin A supplementation enhances the immune function of SPF chickens against IBV infection by inhibiting viral replication, increasing the IBV-specific antibody titer, and suppressing the excessive inflammatory responses to IBV infection.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Animals , Chickens/genetics , Vitamin A , Soybean Oil , Immunity , Dietary Supplements , RNA, Messenger , Coronavirus Infections/veterinary , Specific Pathogen-Free Organisms
2.
Poult Sci ; 100(2): 603-614, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33518113

ABSTRACT

Pigeon paramyxovirus type 1 (PPMV-1) is a globally distributed, virulent member of the avian paramyxovirus type-1. The PPMV-1-associated disease poses a great threat to the pigeon industry. The innate immune response is crucial for antiviral infections and revealing the pathogenic mechanisms of PPMV-1. In this study, we evaluated the pathogenicity of a PPMV-1 strain LHLJ/110822 in one-month-old domestic pigeons, as well as the host immune responses in PPMV-1-infected pigeons. We observed typically clinical sign in infected pigeons by 3 dpi. The morbidity rate and the mortality in pigeons inoculated with the PPMV-1 strain were up to 100% and 30%, respectively. The virus could replicate in all of the examined tissues, namely trachea, lung, liver, spleen, and bursa of Fabricius. In addition, the infected pigeons had developed anti-PPMV-1 antibodies as early as 8 dpi; and the antibody level increased over the time in this study. The expression level of toll-like receptor (TLR) 2, TLR3 TLR15, IFN-γ, and IL-6 were significantly upregulated by the PPMV-1 infection in some tissues of pigeons. By contrast, PPMV-1 infection results in downregulation of IL-18 expression in most of investigated tissues except for bursa of Fabricius in this study. The current results confirmed that this virus could replicate in pigeons and induce host immune responses, then leading to produce serum antibody titers. Meanwhile, the PPMV-1 infection induces strong innate immune responses and intense inflammatory responses at early stage in pigeon which may associate with the viral pathogenesis.


Subject(s)
Columbidae , Newcastle Disease/immunology , Newcastle disease virus/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Viral/physiology , Chick Embryo , Eggs/virology , Immunity, Innate , Newcastle disease virus/pathogenicity , Specific Pathogen-Free Organisms
SELECTION OF CITATIONS
SEARCH DETAIL
...