Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Pain ; 157(3): 652-665, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26882347

ABSTRACT

The enzymatic activity of protein tyrosine kinase Src is subjected to the regulation by C-terminal Src kinase (CSK) and protein tyrosine phosphatases (PTPs). Aberrant Src activation in the spinal cord dorsal horn is pivotal for the induction and development of nociceptive behavioral sensitization. In this study, we found that paxillin, one of the well-characterized cell adhesion components involved in cell migration and survival, integrated CSK and PTPs' signaling to regulate Src-dependent nociceptive plasticity. Paxillin localized at excitatory glutamatergic synapses in the spinal dorsal horn of mice, and the phosphorylation of Tyr118 on paxillin was necessary to associate with and target CSK at synapses. After peripheral tissue injury, the enhanced neuronal activity stimulated N-methyl-D-aspartate (NMDA) subtype glutamate receptors, which initiated PTPs' signaling to catalyze Tyr118 dephosphorylation. The reduced Tyr118 phosphorylation disrupted paxillin interaction with CSK, leading to the dispersal of CSK out of synapses. With the loss of CSK-mediated inhibition, Src activity was persistently increased. The active Src potentiated the synaptic transmission specifically mediated by GluN2B subunit-containing NMDA receptors. The active Src also facilitated the induction of long-term potentiation of C fiber-evoked field potentials and exaggerated painful responses. In complete Freund's adjuvant-injected mice, viral expression of phosphomimicking paxillin mutant to resume CSK synaptic localization repressed Src hyperactivity. Meanwhile, this phosphomimicking paxillin mutant blunted NMDA receptor-mediated synaptic transmission and alleviated chronic inflammatory pain. These data showed that PTPs-mediated dephosphorylation of paxillin at Tyr118 was involved in the modification of nociceptive plasticity through CSK-Src signaling.


Subject(s)
Neuronal Plasticity/physiology , Pain/metabolism , Paxillin/metabolism , Spinal Cord Dorsal Horn/metabolism , Animals , HEK293 Cells , Humans , Male , Mice , Pain/pathology , Phosphorylation/physiology , Rats , Rats, Sprague-Dawley , Spinal Cord Dorsal Horn/pathology
2.
J Neurosci ; 35(41): 13989-4001, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26468199

ABSTRACT

Protein phosphatase-1 (PP1), anchored by regulatory or targeting proteins at excitatory glutamatergic synapses, controls the phosphorylation of postsynaptic substrates and regulates the neurotransmission and plasticity. Here, we found that spinophilin, an actin-binding protein that targets PP1 at postsynaptic density, served as a scaffold for extracellular signal-regulated kinase (ERK) signaling components. Through the C-terminal PDZ domain, spinophilin directly interacted with ERK and its upstream mitogen-activated protein kinase kinase (MEK). PP1, recruited by spinophilin, gained access to and dephosphorylated these kinases, exerting a tonic inhibition of ERK signaling. The removal of PP1 inhibition by disturbing spinophilin/PP1 interaction allowed a restricted activation of MEK/ERK at synapses, which in turn augmented the synaptic transmission specifically mediated by GluN2B subunit-containing N-methyl-d-aspartate subtype of glutamate receptors. We provided evidence that in pain-related spinal cord dorsal horn, the scaffolding function of spinophilin played an important role in the negative control of ERK-dependent and GluN2B-dependent pain sensitization. Expression of wild-type spinophilin produced an effective analgesic action against chronic inflammatory pain induced by complete Freund's adjuvant in rats. SIGNIFICANCE STATEMENT: Extracellular signal-regulated kinase (ERK) relays the signals from multiple transmembrane receptors to a wide range of downstream effectors critical for the regulation of neuronal excitability and plasticity. The strength and duration of ERK signaling is spatiotemporally controlled by protein phosphatases. Sustained activation of ERK has been implicated in a variety of pathological processes. The current study revealed that spinophilin, a well characterized protein phosphatase 1 (PP1) synaptic targeting protein, was able to scaffold mitogen-activated protein kinase kinase (MEK) and ERK for dephosphorylation and inactivation by PP1. The loss of PP1 inhibition, as a result of spinophilin/PP1 dissociation, led to aberrant activation of MEK/ERK signaling, which had important implications for the exaggeration of NMDA receptor-dependent nociceptive synaptic transmission in spinal cord dorsal horn.


Subject(s)
MAP Kinase Kinase Kinases/metabolism , MAP Kinase Signaling System/physiology , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Pain/metabolism , Protein Phosphatase 1/metabolism , Spinal Cord Dorsal Horn/metabolism , Animals , Central Nervous System Stimulants/pharmacology , Disease Models, Animal , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Freund's Adjuvant/toxicity , HEK293 Cells , Humans , In Vitro Techniques , Inflammation/chemically induced , Inflammation/complications , MAP Kinase Signaling System/drug effects , Male , Microfilament Proteins/genetics , Nerve Tissue Proteins/genetics , Pain/drug therapy , Pain/etiology , Pain/pathology , Pain Measurement , Patch-Clamp Techniques , Picrotoxin/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...