Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38676635

ABSTRACT

Exosomes are becoming more widely acknowledged as significant circulating indicators for the prognosis and diagnosis of cancer. Circulating exosomes are essential to the development and spread of cancer, according to a growing body of research. Using existing technology, characterizing exosomes is quite difficult. Therefore, a direct, sensitive, and targeted approach to exosome detection will aid in illness diagnosis and prognosis. The review discusses the new strategies for exosome isolation and detection technologies from microfluidic chips to nanoplasmonic biosensors, analyzing the advantages and limitations of these new technologies. This review serves researchers to better understand exosome isolation and detection methods and to help develop better exosome isolating and detecting devices for clinical applications.

2.
Talanta ; 275: 126111, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38657362

ABSTRACT

Sensitive, accurate, and straightforward biosensors are pivotal in the battle against Alzheimer's disease, particularly in light of the escalating patient population. These biosensors enable early adjunctive diagnosis, thereby facilitating prompt intervention, alleviating socioeconomic burdens, and preserving individual well-being. In this study, we introduce the development of a highly sensitive add-drop dual-microring resonant microfluidic sensing chip boasting a sensitivity of 188.11 nm/RIU, marking a significant 20.7% enhancement over single microring systems. Leveraging ultra-thin Parylene C for streamlined antibody immobilization and non-destructive removal, this platform facilitates the precise quantification of the Alzheimer's disease biomarker Aß42. Employing an immune sensing strategy that amplifies and captures antigen signals using Au-labeled antibodies, we achieve an exceptional limit of detection of 9.02 pg/mL. The designed microring-based microfluidic biosensor chip exhibits outstanding specificity and sensitivity for Aß42 in serum samples, offering a promising avenue for the early adjunctive diagnosis of Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides , Biosensing Techniques , Peptide Fragments , Amyloid beta-Peptides/analysis , Amyloid beta-Peptides/blood , Biosensing Techniques/methods , Humans , Peptide Fragments/blood , Peptide Fragments/analysis , Peptide Fragments/immunology , Alzheimer Disease/diagnosis , Alzheimer Disease/blood , Limit of Detection , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Antibodies, Immobilized/immunology , Antibodies, Immobilized/chemistry , Gold/chemistry
3.
Biosens Bioelectron ; 254: 116220, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38518564

ABSTRACT

As Alzheimer's disease prevalence continues to rise, there is an increasing demand for efficient on-chip biosensors capable of early biomarker detection. This study presents a novel biosensor chip leveraging vertical cavity surface emitting laser (VCSEL) technology, with Parylene C serving as the antibody coupling layer and utilizing a streamlined one-step antibody modification method. Integration of Parylene C enhances chip sensitivity from 34.28 µW/RIU to 40.32 µW/RIU. Moreover, post-testing removal of Parylene C enables chip reusability without significant alteration of results. The sensor demonstrates effective detection of Aß42, an Alzheimer's biomarker, exhibiting a linear range of 1-200 ng/mL and a detection limit of 0.26 ng/mL. These findings underscore the reusability and reliability of the ultrathin Parylene C-based VCSEL biosensor chip, highlighting its potential for point-of-care Alzheimer's disease diagnosis.


Subject(s)
Alzheimer Disease , Biosensing Techniques , Polymers , Xylenes , Humans , Biosensing Techniques/methods , Alzheimer Disease/diagnosis , Reproducibility of Results , Lasers , Biomarkers
4.
Sensors (Basel) ; 24(6)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38544192

ABSTRACT

Silicon photonic-based refractive index sensors are of great value in the detection of gases, biological and chemical substances. Among them, microring resonators are the most promising due to their compact size and narrow Lorentzian-shaped spectrum. The electric field in a subwavelength grating waveguide (SWG) is essentially confined in the low-refractive index dielectric, favoring enhanced analyte-photon interactions, which represents higher sensitivity. However, it is very challenging to further significantly improve the sensitivity of SWG ring resonator refractive index sensors. Here, a hybrid waveguide blocks double slot subwavelength grating microring resonator (HDSSWG-MRR) refractive index sensor operating in a water refractive index environment is proposed. By designing a new waveguide structure, a sensitivity of up to 1005 nm/RIU has been achieved, which is 182 nm/RIU higher than the currently highest sensitivity silicon photonic micro ring refractive index sensor. Meanwhile, utilizing a unique waveguide structure, a Q of 22,429 was achieved and a low limit of detection of 6.86 × 10-5 RIU was calculated.

5.
Biosci Biotechnol Biochem ; 87(12): 1478-1484, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37660248

ABSTRACT

Developing cell cryopreservation methods on chips is not only crucial for biomedical science but also represents an innovative approach for preserving traditional cell samples. This study presents a simple method for direct cell freezing and thawing on chip, allowing for long-term storage of cells. During the freezing process, cells were injected into the microchannel along with a conventional cell cryopreservation solution, and the chip was packed using a self-sealing bag containing isopropyl alcohol and then stored in a -80°C refrigerator until needed. During the thawing process, microcolumn arrays with a spacing of 8 µm were strategically incorporated into the microfluidic chip design to effectively inhibit cells from the channel. The breast cancer cell lines MDA-MB-231 and B47D demonstrated successful thawing and growth after cryopreservation for 1 month to 1 year. These findings offer a direct cell freezing and thawing method on a microfluidic chip for subsequent experiments.


Subject(s)
Cryopreservation , Lab-On-A-Chip Devices , Freezing , Cryopreservation/methods
6.
Opt Express ; 31(8): 12138-12149, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37157379

ABSTRACT

The nanoplasmonic sensor of the nanograting array has a remarkable ability in label-free and rapid biological detection. The integration of the nanograting array with the standard vertical-cavity surface-emitting lasers (VCSEL) platform can achieve a compact and powerful solution to provide on-chip light sources for biosensing applications. Here, a high sensitivity and label-free integrated VCSELs sensor was developed as a suitable analysis technique for COVID-19 specific receptor binding domain (RBD) protein. The gold nanograting array is integrated on VCSELs to realize the integrated microfluidic plasmonic biosensor of on-chip biosensing. The 850 nm VCSELs are used as a light source to excite the localized surface plasmon resonance (LSPR) effect of the gold nanograting array to detect the concentration of attachments. The refractive index sensitivity of the sensor is 2.99 × 106 nW/RIU. The aptamer of RBD was modified on the surface of the gold nanograting to detect the RBD protein successfully. The biosensor has high sensitivity and a wide detection range of 0.50 ng/mL - 50 µg/mL. This VCSELs biosensor provides an integrated, portable, and miniaturized idea for biomarker detection.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , Microfluidics , SARS-CoV-2 , Carrier Proteins , COVID-19/diagnosis , Biosensing Techniques/methods , Surface Plasmon Resonance/methods , Lasers , Gold/chemistry
7.
Sens Actuators B Chem ; 383: 133575, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36873859

ABSTRACT

Sensitive, rapid, and easy-to-implement biosensors are critical in responding to highly contagious and fast-spreading severe acute respiratory syndrome coronavirus (SARS-CoV-2) mutations, enabling early infection screening for appropriate isolation and treatment measures to prevent the spread of the virus. Based on the sensing principle of localized surface plasmon resonance (LSPR) and nanobody immunological techniques, an enhanced sensitivity nanoplasmonic biosensor was developed to quantify the SARS-CoV-2 spike receptor-binding domain (RBD) in serum within 30 min. The lowest concentration in the linear range can be detected down to 0.01 ng/mL by direct immobilization of two engineered nanobodies. Both the sensor fabrication process and immune strategy are facile and inexpensive, with the potential for large-scale application. The designed nanoplasmonic biosensor achieved excellent specificity and sensitivity for SARS-CoV-2 spike RBD, providing a potential option for accurate early screening of the novel coronavirus disease 2019 (COVID-19).

8.
Opt Express ; 30(10): 16630-16643, 2022 May 09.
Article in English | MEDLINE | ID: mdl-36221501

ABSTRACT

Terahertz (THz) metamaterials for rapid label-free sensing show application potential for the detection of cancer biomarkers. A novel flexible THz metamaterial biosensor based on a low refraction index parylene-C substrate is proposed. The biomarkers are modified on non-metal areas by a three-step modification method that simplifies the modification steps and improves the modified effectivity. Simulation results for non-metal modification illustrate that a bulk refractive index sensitivity of 325 GHz/RIU is achieved, which is larger than that obtained for the traditional metal modification (147 GHz/RIU). Meanwhile, several fluorescence experiments proved the uniform modification effect and selective adsorption capacity of the non-metal modification method. The concentration of the carcinoembryonic antigen (CEA) biomarkers for breast cancer patients tested using this THz biosensor is found to be consistent with results obtained from traditional clinical tests. The limit of detection reaches 2.97 ng/mL. These findings demonstrate that the flexible THz metamaterial biosensor can be extensively used for the rapid detection of cancer biomarkers in the future.


Subject(s)
Biosensing Techniques , Neoplasms , Biomarkers, Tumor , Biosensing Techniques/methods , Carcinoembryonic Antigen , Humans , Refractometry
9.
Micromachines (Basel) ; 13(4)2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35457933

ABSTRACT

Metamaterial biosensors have been extensively used to identify cell types and detect concentrations of tumor biomarkers. However, the methods for in situ and non-destruction measurement of cell migration, which plays a key role in tumor progression and metastasis, are highly desirable. Therefore, a flexible terahertz metamaterial biosensor based on parylene C substrate was proposed for label-free and non-destructive detection of breast cancer cell growth and migration. The maximum resonance peak frequency shift achieved 183.2 GHz when breast cancer cell MDA-MB-231 was cultured onto the surface of the metamaterial biosensor for 72 h. A designed polydimethylsiloxane (PDMS) barrier sheet was applied to detect the cell growth rate which was quantified as 14.9 µm/h. The experimental peak shift expressed a linear relationship with the covered area and a quadratic relationship with the distance, which was consistent with simulation results. Additionally, the cell migration indicated that the transform growth factor-ß (TGF-ß) promoted the cancer cell migration. The terahertz metamaterial biosensor shows great potential for the investigation of cell biology in the future.

10.
Micromachines (Basel) ; 12(2)2021 Jan 24.
Article in English | MEDLINE | ID: mdl-33498873

ABSTRACT

Nanoimprint technology is powerful for fabricating nanostructures in a large area. However, expensive equipment, high cost, and complex process conditions hinder the application of nano-imprinting technology. Therefore, double-layer self-priming nanoimprint technology was proposed to fabricate ordered metal nanostructures uniformly on 4-inch soft and hard substrates without the aid of expensive instruments. Different nanostructure (gratings, nanoholes and nanoparticles) and different materials (metal and MoS2) were patterned, which shows wide application of double-layer self-priming nanoimprint technology. Moreover, by a double-layer system, the width and the height of metal can be adjusted through the photoresist thickness and developing condition, which provide a programmable way to fabricate different nanostructures using a single mold. The double-layer self-priming nanoimprint method can be applied in poor condition without equipment and be programmable in nanostructure parameters using a single mold, which reduces the cost of instruments and molds.

SELECTION OF CITATIONS
SEARCH DETAIL
...