Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
J Clin Invest ; 134(9)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470479

ABSTRACT

CD4+ T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-Seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4+ T cells resembling lymph node central memory (TCM) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of TCM. Brain CCR7+ CD4+ T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside CNS border tissues. Sequestering TCM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4+ T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL757 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4+ T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4+ T cells in CNS immune surveillance, and their decline during chronic SIV highlights their responsiveness to neuroinflammation.


Subject(s)
Brain , CD4-Positive T-Lymphocytes , Macaca mulatta , Receptors, CCR7 , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus/immunology , CD4-Positive T-Lymphocytes/immunology , Receptors, CCR7/genetics , Receptors, CCR7/metabolism , Receptors, CCR7/immunology , Brain/immunology , Brain/metabolism , Brain/virology , Brain/pathology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/pathology , Immunologic Surveillance
2.
J Infect Dis ; 229(6): 1702-1710, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38213276

ABSTRACT

Definitive data demonstrating the utility of coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) for treating immunocompromised patients remains elusive. To better understand the mechanism of action of CCP, we studied viral replication and disease progression in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected hamsters treated with CCP obtained from recovered COVID-19 patients that were also vaccinated with an mRNA vaccine, hereafter referred to as Vaxplas. Vaxplas transiently enhanced disease severity and lung pathology in hamsters treated near peak viral replication due to immune complex and activated complement deposition in pulmonary endothelium, and recruitment of M1 proinflammatory macrophages into the lung parenchyma. However, aside from one report, transient enhanced disease has not been reported in CCP recipient patients, and the transient enhanced disease in Vaxplas hamsters may have been due to mismatched species IgG-FcR interactions, infusion timing, or other experimental factors. Despite transient disease enhancement, Vaxplas dramatically reduced virus replication in lungs and improved infection outcome in SARS-CoV-2-infected hamsters.


Subject(s)
Antibodies, Viral , COVID-19 Serotherapy , COVID-19 Vaccines , COVID-19 , Immunization, Passive , Lung , SARS-CoV-2 , Virus Replication , Animals , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Cricetinae , Lung/virology , Lung/immunology , Lung/pathology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Humans , Mesocricetus , Disease Models, Animal , Male , Female
3.
PLoS Pathog ; 19(12): e1011844, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38060615

ABSTRACT

Virologic suppression with antiretroviral therapy (ART) has significantly improved health outcomes for people living with HIV, yet challenges related to chronic inflammation in the central nervous system (CNS)-known as Neuro-HIV- persist. As primary targets for HIV-1 with the ability to survey and populate the CNS and interact with myeloid cells to co-ordinate neuroinflammation, CD4 T cells are pivotal in Neuro-HIV. Despite their importance, our understanding of CD4 T cell distribution in virus-targeted CNS tissues, their response to infection, and potential recovery following initiation of ART remain limited. To address these gaps, we studied ten SIVmac251-infected rhesus macaques using an ART regimen simulating suboptimal adherence. We evaluated four macaques during the acute phase pre-ART and six during the chronic phase. Our data revealed that HIV target CCR5+ CD4 T cells inhabit both the brain parenchyma and adjacent CNS tissues, encompassing choroid plexus stroma, dura mater, and the skull bone marrow. Aligning with the known susceptibility of CCR5+ CD4 T cells to viral infection and their presence within the CNS, high levels of viral RNA were detected in the brain parenchyma and its border tissues during acute SIV infection. Single-cell RNA sequencing of CD45+ cells from the brain revealed colocalization of viral transcripts within CD4 clusters and significant activation of antiviral molecules and specific effector programs within T cells, indicating CNS CD4 T cell engagement during infection. Acute infection led to marked imbalance in the CNS CD4/CD8 ratio which persisted into the chronic phase. These observations underscore the functional involvement of CD4 T cells within the CNS during SIV infection, enhancing our understanding of their role in establishing CNS viral presence. Our findings offer insights for potential T cell-focused interventions while underscoring the challenges in eradicating HIV from the CNS, particularly in the context of sub-optimal ART.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Humans , CD4-Positive T-Lymphocytes , Simian Immunodeficiency Virus/physiology , Macaca mulatta , Central Nervous System , Viral Load
4.
bioRxiv ; 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37693567

ABSTRACT

CD4 T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4 T cells resembling lymph node central memory (T CM ) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of T CM . Brain CCR7+ CD4 T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside other CNS border tissues. Sequestering T CM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4 T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL57 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4 T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4 T cells in CNS immune surveillance and their decline during chronic SIV-induced neuroinflammation highlights their responsiveness to neuroinflammatory processes. In Brief: Utilizing single-cell and spatial transcriptomics on adult rhesus brain, we uncover a unique CCR7+ CD4 T cell subset resembling central memory T cells (T CM ) within brain and border tissues, including skull bone marrow. Our findings show decreased frequencies of this subset during SIV- induced chronic neuroinflammation, emphasizing responsiveness of CCR7+ CD4 T cells to CNS disruptions. Highlights: CCR7+ CD4 T cells survey border and parenchymal CNS compartments during homeostasis; reduced presence of CCR7+ CD4 T cells in cerebrospinal fluid leads to immune activation, implying a role in neuroimmune homeostasis. CNS CCR7+ CD4 T cells exhibit phenotypic and functional features of central memory T cells (T CM ) including production of interleukin 2 and the capacity for rapid recall proliferation. Furthermore, CCR7+ CD4 T cells reside in the skull bone marrow. CCR7+ CD4 T cells are markedly decreased within the brain parenchyma during chronic viral neuroinflammation.

5.
bioRxiv ; 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37662237

ABSTRACT

Virologic suppression with antiretroviral therapy (ART) has significantly improved health outcomes for people living with HIV, yet challenges related to chronic inflammation in the central nervous system (CNS) - known as Neuro-HIV- persist. As primary targets for HIV-1 with the ability to survey and populate the CNS and interact with myeloid cells to co-ordinate neuroinflammation, CD4 T cells are pivotal in Neuro-HIV. Despite their importance, our understanding of CD4 T cell distribution in virus-targeted CNS tissues, their response to infection, and potential recovery following initiation of ART remain limited. To address these gaps, we studied ten SIVmac251-infected rhesus macaques using an ART regimen simulating suboptimal adherence. We evaluated four macaques during the acute phase pre-ART and six during the chronic phase. Our data revealed that HIV target CCR5+ CD4 T cells inhabit both the brain parenchyma and adjacent CNS tissues, encompassing choroid plexus stroma, dura mater, and the skull bone marrow. Aligning with the known susceptibility of CCR5+ CD4 T cells to viral infection and their presence within the CNS, high levels of viral RNA were detected in the brain parenchyma and its border tissues during acute SIV infection. Single-cell RNA sequencing of CD45+ cells from the brain revealed colocalization of viral transcripts within CD4 clusters and significant activation of antiviral molecules and specific effector programs within T cells, indicating CNS CD4 T cell engagement during infection. Despite viral suppression with ART, acute infection led to significant depletion of CNS CD4 T cells, persisting into the chronic phase. These findings underscore the functional involvement of CD4 T cells within the CNS during SIV infection, enhancing our understanding of their role in establishing CNS viral presence. Our results offer insights for potential T cell-focused interventions while also underscoring the challenges in eradicating HIV from the CNS, even with effective ART.

6.
bioRxiv ; 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37662344

ABSTRACT

The utility of COVID-19 convalescent plasma (CCP) for treatment of immunocompromised patients who are not able to mount a protective antibody response against SARS-CoV-2 and who have contraindications or adverse effects from currently available antivirals remains unclear. To better understand the mechanism of protection in CCP, we studied viral replication and disease progression in SARS-CoV-2 infected hamsters treated with CCP plasma obtained from recovered COVID patients that had also been vaccinated with an mRNA vaccine, hereafter referred to as Vaxplas. We found that Vaxplas dramatically reduced virus replication in the lungs and improved infection outcome in SARS-CoV-2 infected hamsters. However, we also found that Vaxplas transiently enhanced disease severity and lung pathology in treated animals likely due to the deposition of immune complexes, activation of complement and recruitment of increased numbers of macrophages with an M1 proinflammatory phenotype into the lung parenchyma.

7.
Immunohorizons ; 6(12): 851-863, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36547390

ABSTRACT

The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated coronavirus disease (COVID-19) has led to a pandemic of unprecedented scale. An intriguing feature of the infection is the minimal disease in most children, a demographic at higher risk for other respiratory viral diseases. To investigate age-dependent effects of SARS-CoV-2 pathogenesis, we inoculated two rhesus macaque monkey dam-infant pairs with SARS-CoV-2 and conducted virological and transcriptomic analyses of the respiratory tract and evaluated systemic cytokine and Ab responses. Viral RNA levels in all sampled mucosal secretions were comparable across dam-infant pairs in the respiratory tract. Despite comparable viral loads, adult macaques showed higher IL-6 in serum at day 1 postinfection whereas CXCL10 was induced in all animals. Both groups mounted neutralizing Ab responses, with infants showing a more rapid induction at day 7. Transcriptome analysis of tracheal airway cells isolated at day 14 postinfection revealed significant upregulation of multiple IFN-stimulated genes in infants compared with adults. In contrast, a profibrotic transcriptomic signature with genes associated with cilia structure and function, extracellular matrix composition and metabolism, coagulation, angiogenesis, and hypoxia was induced in adults compared with infants. Our study in rhesus macaque monkey dam-infant pairs suggests age-dependent differential airway responses to SARS-CoV-2 infection and describes a model that can be used to investigate SARS-CoV-2 pathogenesis between infants and adults.


Subject(s)
COVID-19 , Animals , Macaca mulatta , Lung/pathology , SARS-CoV-2 , Virus Replication
8.
RSC Adv ; 12(27): 17285-17293, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35765444

ABSTRACT

The combined catalytic system of Electro-Fenton (E-Fenton) and Phanerochaete chrysosporium (P. chrysosporium) was constructed in liquid medium with additional potential to overcome the limitations of lignin degradation by white rot fungi alone. To further understand the mechanism of synergistic catalysis, we optimized the optimum potential for lignin catalysis by P. chrysosporium and built synergistic versus separate catalyses. After 48 h of incubation, the optimum growth environment and the highest lignin degradation rate (43.8%) of P. chrysosporium were achieved when 4 V was applied. After 96 h, the lignin degradation rate of the cocatalytic system was 62% (E-Fenton catalysis alone 22% and P. chrysosporium catalysis alone 19%), the pH of the growth maintenance system of P. chrysosporium was approximately 3.5, and the lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) enzyme activities, were significantly better than those of the control. The qPCR results indicated that the expression of both MnP and LiP genes was higher in the cocatalytic system. Meanwhile, FTIR and 2D-HSQC NMR confirmed that the synergistic catalysis was effective in breaking the aromatic functional groups and the side chains of the aliphatic region of lignin. This study showed that the synergistic catalytic process of electro-Fenton and P. chrysosporium was highly efficient in the degradation of lignin. In addition, the synergetic system is simple to operate, economical and green, and has good prospects for industrial application.

9.
PLoS Pathog ; 18(4): e1009925, 2022 04.
Article in English | MEDLINE | ID: mdl-35443018

ABSTRACT

Early in the SARS-CoV-2 pandemic, there was a high level of optimism based on observational studies and small controlled trials that treating hospitalized patients with convalescent plasma from COVID-19 survivors (CCP) would be an important immunotherapy. However, as more data from controlled trials became available, the results became disappointing, with at best moderate evidence of efficacy when CCP with high titers of neutralizing antibodies was used early in infection. To better understand the potential therapeutic efficacy of CCP, and to further validate SARS-CoV-2 infection of macaques as a reliable animal model for testing such strategies, we inoculated 12 adult rhesus macaques with SARS-CoV-2 by intratracheal and intranasal routes. One day later, 8 animals were infused with pooled human CCP with a high titer of neutralizing antibodies (RVPN NT50 value of 3,003), while 4 control animals received normal human plasma. Animals were monitored for 7 days. Animals treated with CCP had detectable but low levels of antiviral antibodies after infusion. In comparison to the control animals, CCP-treated animals had similar levels of viral RNA in upper and lower respiratory tract secretions, similar detection of viral RNA in lung tissues by in situ hybridization, but lower amounts of infectious virus in the lungs. CCP-treated animals had a moderate, but statistically significant reduction in interstitial pneumonia, as measured by comprehensive lung histology. Thus overall, therapeutic benefits of CCP were marginal and inferior to results obtained earlier with monoclonal antibodies in this animal model. By highlighting strengths and weaknesses, data of this study can help to further optimize nonhuman primate models to provide proof-of-concept of intervention strategies, and guide the future use of convalescent plasma against SARS-CoV-2 and potentially other newly emerging respiratory viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antiviral Agents , COVID-19/therapy , Humans , Immunization, Passive , Macaca mulatta , RNA, Viral , COVID-19 Serotherapy
10.
ACS Omega ; 7(12): 10550-10558, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35382266

ABSTRACT

Hydroxyapatite (HA) had the effect of maintaining the pH balance of the reaction system and promoting enzyme activity. In this work, hydroxyapatite was synthesized by coprecipitation and characterized for biohydrogen (bioH2) production from glucose. The highest bioH2 yield obtained was 182.33 ± 2.41 mL/g glucose, amended with an optimal dosage of 400 mg/L HA, which was a 55.80% higher bioH2 yield compared with the control group without any addition. The results indicated that HA facilitated the deterioration of organic substances and increased the concentration of soluble microbial products (SMPs). Microbial community analysis revealed that HA significantly increased the abundance of Firmicutes from 35.27% (0 mg/L, HA) to 76.41% (400 mg/L, HA), which played an essential role in bioH2 generation. In particular, the abundance of Clostridium sensu stricto 1 increased from 15.33% (0 mg/L HA) to 45.17% (400 mg/L HA) and became the dominant bacteria. The results also indicated that HA likely improves bioH2 production from organic wastewater in practice.

11.
PLoS Pathog ; 18(2): e1009914, 2022 02.
Article in English | MEDLINE | ID: mdl-35143587

ABSTRACT

As novel SARS-CoV-2 variants continue to emerge, it is critical that their potential to cause severe disease and evade vaccine-induced immunity is rapidly assessed in humans and studied in animal models. In early January 2021, a novel SARS-CoV-2 variant designated B.1.429 comprising 2 lineages, B.1.427 and B.1.429, was originally detected in California (CA) and it was shown to have enhanced infectivity in vitro and decreased antibody neutralization by plasma from convalescent patients and vaccine recipients. Here we examine the virulence, transmissibility, and susceptibility to pre-existing immunity for B 1.427 and B 1.429 in the Syrian hamster model. We find that both variants exhibit enhanced virulence as measured by increased body weight loss compared to hamsters infected with ancestral B.1 (614G), with B.1.429 causing the most marked body weight loss among the 3 variants. Faster dissemination from airways to parenchyma and more severe lung pathology at both early and late stages were also observed with B.1.429 infections relative to B.1. (614G) and B.1.427 infections. In addition, subgenomic viral RNA (sgRNA) levels were highest in oral swabs of hamsters infected with B.1.429, however sgRNA levels in lungs were similar in all three variants. This demonstrates that B.1.429 replicates to higher levels than ancestral B.1 (614G) or B.1.427 in the oropharynx but not in the lungs. In multi-virus in-vivo competition experiments, we found that B.1. (614G), epsilon (B.1.427/B.1.429) and gamma (P.1) dramatically outcompete alpha (B.1.1.7), beta (B.1.351) and zeta (P.2) in the lungs. In the nasal cavity, B.1. (614G), gamma, and epsilon dominate, but the highly infectious alpha variant also maintains a moderate size niche. We did not observe significant differences in airborne transmission efficiency among the B.1.427, B.1.429 and ancestral B.1 (614G) and WA-1 variants in hamsters. These results demonstrate enhanced virulence and high relative oropharyngeal replication of the epsilon (B.1.427/B.1.429) variant in Syrian hamsters compared to an ancestral B.1 (614G) variant.


Subject(s)
COVID-19/virology , SARS-CoV-2/pathogenicity , Animals , COVID-19/pathology , Disease Models, Animal , Female , Humans , Lung/pathology , Lung/virology , Male , Mesocricetus , Mutation , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virulence
12.
Fundam Clin Pharmacol ; 36(4): 699-711, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35064580

ABSTRACT

Inadequate ß-cell mass is essential for the pathogenesis of type 2 diabetes (T2D). Previous report showed that an immunomodulator FTY720, a sphingosine 1-phosphate (S1P) receptor modulator, sustainably normalized hyperglycemia by stimulating ß-cell in vivo regeneration in db/db mice. We further examined the effects of FTY720 on glucose homeostasis and diabetic complications in a translational nonhuman primate (NHP) model of spontaneously developed diabetes. The male diabetic cynomolgus macaques of 18-19 year old were randomly divided into Vehicle (Purified water, n = 5) and FTY720 (5 mg/kg, n = 7) groups with oral gavage once daily for 10 weeks followed by 10 weeks drug free period. Compared with the Vehicle group, FTY720 effectively lowered HbA1c, blood concentrations of fasting glucose (FBG) and insulin, hence, decreased homeostatic model assessment of insulin resistance (HOMA-IR); ameliorated glucose intolerance and restored glucose-stimulated insulin release, indicating rejuvenation of ß-cell function in diabetic NHPs. Importantly, after withdrawal of FTY720, FBG, and HbA1c remained at low level in the drug free period. Echocardiography revealed that FTY720 significantly reduced proteinuria and improved cardiac left ventricular systolic function measured by increased ejection fraction and fractional shortening in the diabetic NHPs. Finally, flow cytometry analysis (FACS) detected that FTY720 significantly reduced CD4 + and CD8 + T lymphocytes as well as increased DC cells in the circulation. Immunomodulator FTY720 improves glucose homeostasis via rejuvenation of ß-cell function, which can be mediated by suppression of cytotoxic CD8 + T lymphocytes to ß-cells, thus, may be a novel immunotherapy to reverse T2D progression and ameliorate the diabetic complications.


Subject(s)
Diabetes Complications , Diabetes Mellitus, Type 2 , Animals , Diabetes Complications/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Fingolimod Hydrochloride/pharmacology , Glucose , Glycated Hemoglobin , Homeostasis , Immunologic Factors , Insulin , Male , Primates , Rejuvenation
13.
Bioresour Technol ; 343: 126141, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34655780

ABSTRACT

In the present study, a dark fermentation system inoculated with mixed culture bacteria (MCB) was developed using prepared alkali-based magnetic nanosheets (AMNSs) to facilitate biohydrogen (BioH2) production. The highest BioH2 yields of 232.8 ± 8.5 and 150.3 ± 4.8 mL/g glucose were observed at 100 (mesophilic condition) and 400 (thermophilic condition) mg/L AMNSs groups, which were 65.4% and 43.3%, respectively, above the 0 mg/L AMNSs group. The fermentation pathway revealed that AMNSs enhanced the butyrate-type metabolic pathway and the corresponding nicotinamide adenine dinucleotides (NADHand NAD+) ratio, and hydrogenase activity was enhanced in mesophilic fermentation. The interaction of AMNSs and MCB suggested that AMNSs could assist in electron transfer and that the released metal elements might be responsible for elevated hydrogenase activity. AMNSs also promoted the evolution of the dominant microbial community and altered the content of extracellular polymers, leading to increased production of BioH2.


Subject(s)
Hydrogen , Microbiota , Alkalies , Fermentation , Magnetic Phenomena
14.
Cell Rep ; 37(5): 109942, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34706272

ABSTRACT

Anti-viral monoclonal antibody (mAb) treatments may provide immediate but short-term immunity from coronavirus disease 2019 (COVID-19) in high-risk populations, such as people with diabetes and the elderly; however, data on their efficacy in these populations are limited. We demonstrate that prophylactic mAb treatment blocks viral replication in both the upper and lower respiratory tracts in aged, type 2 diabetic rhesus macaques. mAb infusion dramatically curtails severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-mediated stimulation of interferon-induced chemokines and T cell activation, significantly reducing development of interstitial pneumonia. Furthermore, mAb infusion significantly dampens the greater than 3-fold increase in SARS-CoV-2-induced effector CD4 T cell influx into the cerebrospinal fluid. Our data show that neutralizing mAbs administered preventatively to high-risk populations may mitigate the adverse inflammatory consequences of SARS-CoV-2 exposure.


Subject(s)
Antibodies, Monoclonal/therapeutic use , COVID-19/prevention & control , SARS-CoV-2/immunology , Aging/immunology , Animals , COVID-19/cerebrospinal fluid , COVID-19/complications , COVID-19/immunology , Diabetes Complications/immunology , Diabetes Complications/virology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/immunology , Female , Humans , Lymphocyte Activation , Macaca mulatta , Male , Neuritis/immunology , Neuritis/prevention & control , Pre-Exposure Prophylaxis , T-Lymphocytes/immunology , Virus Replication/immunology
15.
bioRxiv ; 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34462750

ABSTRACT

As novel SARS-CoV-2 variants continue to emerge, it is critical that their potential to cause severe disease and evade vaccine-induced immunity is rapidly assessed in humans and studied in animal models. In early January 2021, a novel variant of concern (VOC) designated B.1.429 comprising 2 lineages, B.1.427 and B.1.429, was originally detected in California (CA) and shown to enhance infectivity in vitro and decrease antibody neutralization by plasma from convalescent patients and vaccine recipients. Here we examine the virulence, transmissibility, and susceptibility to pre-existing immunity for B 1.427 and B 1.429 in the Syrian hamster model. We find that both strains exhibit enhanced virulence as measured by increased body weight loss compared to hamsters infected with ancestral B.1 (614G), with B.1.429 causing the most body weight loss among all 3 lineages. Faster dissemination from airways to parenchyma and more severe lung pathology at both early and late stages were also observed with B.1.429 infections relative to B.1. (614G) and B.1.427 infections. In addition, subgenomic viral RNA (sgRNA) levels were highest in oral swabs of hamsters infected with B.1.429, however sgRNA levels in lungs were similar in all three strains. This demonstrates that B.1.429 replicates to higher levels than ancestral B.1 (614G) or B.1.427 in the upper respiratory tract (URT) but not in the lungs. In multi-virus in-vivo competition experiments, we found that epsilon (B.1.427/B.1.429) and gamma (P.1) dramatically outcompete alpha (B.1.1.7), beta (B.1.351) and zeta (P.2) in the lungs. In the URT gamma, and epsilon dominate, but the highly infectious alpha variant also maintains a moderate size niche. We did not observe significant differences in airborne transmission efficiency among the B.1.427, B.1.429 and ancestral B.1 (614G) variants in hamsters. These results demonstrate enhanced virulence and high relative fitness of the epsilon (B.1.427/B.1.429) variant in Syrian hamsters compared to an ancestral B.1 (614G) strain. AUTHOR SUMMARY: In the last 12 months new variants of SARS-CoV-2 have arisen in the UK, South Africa, Brazil, India, and California. New SARS-CoV-2 variants will continue to emerge for the foreseeable future in the human population and the potential for these new variants to produce severe disease and evade vaccines needs to be understood. In this study, we used the hamster model to determine the epsilon (B.1.427/429) SARS-CoV-2 strains that emerged in California in late 2020 cause more severe disease and infected hamsters have higher viral loads in the upper respiratory tract compared to the prior B.1 (614G) strain. These findings are consistent with human clinical data and help explain the emergence and rapid spread of this strain in early 2021.

16.
J Virol ; 95(16): e0040321, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34037419

ABSTRACT

To understand susceptibility of wild California sea lions and Northern elephant seals to influenza A virus (IAV), we developed an ex vivo respiratory explant model and used it to compare infection kinetics for multiple IAV subtypes. We first established the approach using explants from colonized rhesus macaques, a model for human IAV. Trachea, bronchi, and lungs from 11 California sea lions, 2 Northern elephant seals, and 10 rhesus macaques were inoculated within 24 h postmortem with 6 strains representing 4 IAV subtypes. Explants from the 3 species showed similar IAV infection kinetics, with peak viral titers 48 to 72 h post-inoculation that increased by 2 to 4 log10 PFU/explant relative to the inoculum. Immunohistochemistry localized IAV infection to apical epithelial cells. These results demonstrate that respiratory tissue explants from wild marine mammals support IAV infection. In the absence of the ability to perform experimental infections of marine mammals, this ex vivo culture of respiratory tissues mirrors the in vivo environment and serves as a tool to study IAV susceptibility, host range, and tissue tropism. IMPORTANCE Although influenza A virus can infect marine mammals, a dearth of marine mammal cell lines and ethical and logistical challenges prohibiting experimental infections of living marine mammals mean that little is known about IAV infection kinetics in these species. We circumvented these limitations by adapting a respiratory tract explant model first to establish the approach with rhesus macaques and then for use with explants from wild marine mammals euthanized for nonrespiratory medical conditions. We observed that multiple strains representing 4 IAV subtypes infected trachea, bronchi, and lungs of macaques and marine mammals with variable peak titers and kinetics. This ex vivo model can define infection dynamics for IAV in marine mammals. Further, use of explants from animals euthanized for other reasons reduces use of animals in research.


Subject(s)
Influenza A virus/physiology , Orthomyxoviridae Infections/virology , Respiratory Tract Infections/virology , Animals , Dogs , Host Specificity , Influenza A virus/classification , Kinetics , Macaca mulatta , Madin Darby Canine Kidney Cells , Models, Biological , Respiratory System/pathology , Respiratory System/virology , Sea Lions , Seals, Earless , Species Specificity , Viral Load , Viral Tropism
17.
Nat Commun ; 12(1): 541, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483492

ABSTRACT

CD4 T follicular helper (Tfh) cells are important for the generation of durable and specific humoral protection against viral infections. The degree to which SARS-CoV-2 infection generates Tfh cells and stimulates the germinal center (GC) response is an important question as we investigate vaccine induced immunity against COVID-19. Here, we report that SARS-CoV-2 infection in rhesus macaques, either infused with convalescent plasma, normal plasma, or receiving no infusion, resulted in transient accumulation of pro-inflammatory monocytes and proliferating Tfh cells with a Th1 profile in peripheral blood. CD4 helper cell responses skewed predominantly toward a Th1 response in blood, lung, and lymph nodes. SARS-CoV-2 Infection induced GC Tfh cells specific for the SARS-CoV-2 spike and nucleocapsid proteins, and a corresponding early appearance of antiviral serum IgG antibodies. Collectively, the data show induction of GC responses in a rhesus model of mild COVID-19.


Subject(s)
COVID-19/immunology , Germinal Center/immunology , SARS-CoV-2/immunology , T Follicular Helper Cells/immunology , Th1 Cells/immunology , Animals , Antibodies, Viral/blood , COVID-19/therapy , Cell Line , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/immunology , Disease Models, Animal , Female , Humans , Immunity, Humoral/immunology , Immunization, Passive , Immunogenicity, Vaccine/immunology , Immunoglobulin G/blood , Macaca mulatta , Male , Phosphoproteins/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , COVID-19 Serotherapy
18.
Res Sq ; 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32818217

ABSTRACT

CD4 T follicular helper (T fh ) cells are important for the generation of durable and specific humoral protection against viral infections. The degree to which SARS-CoV-2 infection generates T fh cells and stimulates the germinal center response is an important question as we investigate vaccine options for the current pandemic. Here we report that SARS-CoV-2 infection resulted in transient accumulation of pro-inflammatory monocytes and proliferating T fh cells with a T h 1 profile in peripheral blood. CD4 helper cell responses were skewed predominantly toward a T h 1 response in blood, lung, and lymph nodes. We observed the generation of germinal center T fh cells specific for the SARS-CoV-2 spike (S) and nucleocapsid (N) proteins, and a corresponding early appearance of antiviral serum IgG antibodies. Our data suggest that a vaccine promoting T h 1-type T fh responses that target the S protein may lead to protective immunity.

19.
bioRxiv ; 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32676606

ABSTRACT

CD4 T follicular helper (T fh ) cells are important for the generation of long-lasting and specific humoral protection against viral infections. The degree to which SARS-CoV-2 infection generates T fh cells and stimulates the germinal center response is an important question as we investigate vaccine options for the current pandemic. Here we report that, following infection with SARS-CoV-2, adult rhesus macaques exhibited transient accumulation of activated, proliferating T fh cells in their peripheral blood on a transitory basis. The CD4 helper cell responses were skewed predominantly toward a T h 1 response in blood, lung, and lymph nodes, reflective of the interferon-rich cytokine environment following infection. We also observed the generation of germinal center T fh cells specific for the SARS-CoV-2 spike (S) and nucleocapsid (N) proteins, and a corresponding early appearance of antiviral serum IgG antibodies but delayed or absent IgA antibodies. Our data suggest that a vaccine promoting Th1-type Tfh responses that target the S protein may lead to protective immunity.

20.
AIDS ; 33(15): 2289-2298, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31764094

ABSTRACT

BACKGROUND: We aimed to characterize the impact of antiretroviral therapy (ART) initiation on gastrointestinal-associated lymphoid tissue at various sites along the gastrointestinal site. METHODOLOGY: Peripheral blood and duodenal and rectal biopsies were obtained from 12 HIV to 33 treatment-naive HIV participants at baseline and after 9 months ART. Tissue was digested for immunophenotyping. Inflammatory, bacterial translocation and intestinal damage markers were measured in plasma. RESULTS: Twenty-six HIV patients completed follow-up. The lowest reconstitution of CD4 T cells and the lowest CD4/CD8 ratio during ART compared with blood were observed in the duodenum with the rectum being either intermediate or approaching blood levels. Regulatory T cells were in higher proportions in the duodenum than the rectum and neither declined significantly during ART. Several correlations with biomarkers of microbial translocation were observed including increases in lipoteichoic acid levels, which reflects Gram-positive bacterial translocation, correlated with increases in %CD4 T cells in the duodenum (Rho 0.773, P = 0.033), and with decreases in duodenal regulatory T-cell populations (Rho -0.40, P = 0.045). CONCLUSION: HIV-mediated immunological disruption is greater in the duodenum than rectum and blood before and during ART. Small intestine damage may represent a unique environment for T-cell depletion, which might be attenuated by interaction with Gram-positive bacteria.


Subject(s)
Duodenum/immunology , HIV Infections/drug therapy , HIV Infections/immunology , Immune Reconstitution , Rectum/immunology , Adult , Antiretroviral Therapy, Highly Active , Biopsy , Blood/immunology , CD4-CD8 Ratio , CD4-Positive T-Lymphocytes/immunology , Female , Humans , Immunophenotyping , Intestinal Mucosa/immunology , Linear Models , Lymphocyte Activation , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...