Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Environ Res ; 91(8): 700-714, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30839131

ABSTRACT

Anaerobic digestion (AD) is an established method for sustainable energy production. Anaerobic digestion model No.1 (ADM1) was used to simulate methane production (MP) and volatile fatty acid (VFA) concentrations at different ammonium concentrations. In accordance with the incomplete description of several biochemical reactions and the omission of several reaction processes, ADM1 was modified with the consideration of acetic acid inhibition and valeric acid existence. ADM1_ac (ADM1 added acetic acid inhibition) could obtain better simulation accuracy of MP (goodness-of-fit value = 0.945), and VFA concentrations (goodness-of-fit values > 0.39) were all higher than ADM1_original, but cannot explain the valeric acid production. ADM1_va (ADM1 added valeric acid existence) could achieve better simulation of valeric acid (achieving a breakthrough of zero), nevertheless the accuracy of propionic and butyric acids was poorer than ADM1_ac with differences between experimental and simulation values were 5%-10% lower. With both factors coordinated, MP and VFA concentrations could be simulated accurately by ADM1_ac_va (ADM1 added acetic acid inhibition and valeric acid existence), with the highest goodness-of-fit values (>0.85). The results of a verification experiment with ADM1_ac_va simulation further indicated that acetic acid inhibition and valeric acid as new component were both important in ADM1. PRACTITIONER POINTS: ADM1_ac could simulate MP and acetate, propionate and butyrate concentrations better. ADM1_va could explain the valerate production during AD of glucose. ADM1_ac_va could simulate AD process quite accurately, with the highest goodness-of-fit values (>0.85). Acetate inhibition and valerate existence were both important and should be considered in ADM1.


Subject(s)
Methane/biosynthesis , Models, Biological , Pentanoic Acids/metabolism , Acetic Acid , Ammonia , Anaerobiosis , Biofuels , Glucose/metabolism
2.
Water Sci Technol ; 75(7-8): 1607-1616, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28402301

ABSTRACT

The methane production potential of kitchen waste (KW) obtained from different sources was compared through mesophilic and thermophilic anaerobic digestion. The methane yields (MYs) obtained with the same KW sample under different temperatures were similar, whereas the MYs obtained with different samples differed significantly. The highest MY obtained in S7 was 54%-60% higher than the lowest MY in S3. The modified Gompertz model was utilized to simulate the methane production process. The maximum production rate of methane under thermophilic conditions was 2%-86% higher than that under mesophilic conditions. The characteristics of different KW samples were studied. In the distribution of total chemical oxygen demand, the diversity of organic compounds of KW was the most dominant factor that affected the potential MYs of KW. The effect of the C/N and C/P ratios or the concentration of metal ions was insignificant. Two typical methods to calculate the theoretical MY (TMY) were compared, the organic composition method can simulate methane production more precisely than the elemental analysis method. Significant linear correlations were found between TMYorg and MYs under mesophilic and thermophilic conditions. The organic composition method can thus be utilized as a fast technique to predict the methane production potential of KW.


Subject(s)
Bacteria/metabolism , Methane/analysis , Anaerobiosis , Biodegradation, Environmental , Bioreactors , Methane/metabolism , Models, Theoretical , Refuse Disposal , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...