Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Plants (Basel) ; 11(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36235349

ABSTRACT

To date, there have been few studies of the functional traits of the dioecious Hippophae tibetana Schlecht leaves, either male or female, in response to ecological factors such as altitude. Elucidating these relationships will establish an important scientific basis for vegetation restoration and reconstruction of the Tibetan Plateau ecosystem. The natural populations of H. tibetana, distributed across three field sites, at 2868 m, 3012 m and 3244 m, in Tianzhu, Gansu, were studied by field survey sampling and laboratory analysis. In particular, the adaptions of leaf functional traits to elevation in these dioecious plants were analyzed. The results show that: (1) there is no "midday depression" of photosynthetic activity in either male or female plants. Over a one-day period, the net photosynthetic rate (Pn) and transpiration rate (Tr) of H. tibetana female plants were higher than those of male plants (p < 0.05). This correlated to the period of vigorous fruit growth in the female plant. The measured Pn and Tr were maximal at the intermediate altitude (3012 m). The light compensation point (LCP) of the leaves of male and female plants were 57.6 and 43.2 µmol·m−2·s−1, respectively, and the light saturation points (LSP) of the leaves were 1857.6 and 1596.8 µmol·m−2·s−1. (2) Altitude had a significant effect on plant and leaf functional traits of male and female H. tibetana (p < 0.05), and no significant difference was noted between plants at the same altitude. The values for leaf area (LA), specific leaf weight (LMA), leaf phosphorus content per unit mass (Pmass) and leaf phosphorus content per unit area (Parea) were also maximal at the intermediate altitude. Leaf nitrogen content per unit area (Narea) and leaf nitrogen content per unit mass (Nmass) increased with altitude. This indicated that the functional traits of male and female plants and leaves of H. tibetana showed a strong "trade-off relationship" with altitude. (3) Pearson correlation analysis showed that there were significant correlations among functional traits of H. tibetana leaves. Redundancy analysis (RDA) showed that soil water content (SWC), altitude (Alt) and soil organic carbon (SOC) had significant effects on the functional traits of H. tibetana leaves (p < 0.05).

2.
PhytoKeys ; 201: 51-76, 2022.
Article in English | MEDLINE | ID: mdl-36762310

ABSTRACT

The characteristics of the leaf epidermis have proven to be useful criteria to support taxonomic studies within Fabaceae. However, there are few systematic studies on the taxonomic significance of leaf epidermis of Oxytropis DC. Here, we used light and scanning electron microscopy to investigate leaf epidermal characteristics of 18 species of genus Oxytropis from the Northeastern Margin of Qinghai-Tibet Plateau. Our examination showed two main types of leaf epidermal cells: polygonal and irregular, and four different patterns of anticlinal walls: straight-arched, sinuolate, undulate, and sinuate. All species studied possess anomocytic stomata. Two trichome shapes were identified: strip-like trichomes, that were present only in O.ciliata, and cylindrical trichomes, present in all other species. Epidermal cell shape and anticlinal wall pattern were constant within species and are useful for species delimitation within genus Oxytropis, when combined with other macroscopic traits. The shape of trichomes can be useful for distinguishing O.ciliata from the other investigated species. Stomatal type was the same within the genus and may be used to elaborate the phylogenetic relationships between genera in combination with data on stomata from other genera. Cluster analysis results were largely consistent with the classification of species and sections based on macro morphological data, indicating that foliar epidermis characteristics of Oxytropis can be used as markers for taxonomic identification at the infrageneric classification level. Lastly, our results support the delineation of the section Leucopodia as an independent section but do not support the merging of section Gobicola into section Baicalia.

3.
Ying Yong Sheng Tai Xue Bao ; 23(5): 1333-8, 2012 May.
Article in Chinese | MEDLINE | ID: mdl-22919845

ABSTRACT

A simulation experiment with supplementation and exclusion of solar ultraviolet-B (UV-B) radiation was conducted to study the effects of enhanced and near ambient UV-B radiation on the growth and reproduction of alpine annual pasture Vicia angustifolia on Qinghai-Tibet Plateau. Enhanced UV-B decreased the plant height and biomass, biomass allocation to fruit, flower number, and 100-seed mass significantly, delayed flowering stage, increased the concentration degree of flowering and success rate of reproduction, but had little effect on seed yield. Near ambient UV-B radiation made the plant height increased after an initial decrease, decreased biomass allocation to fruit and 100-seed mass, but little affected flowering duration, flower number, and seed yield. Both enhanced and near ambient UV-B radiation could inhibit the growth and production of V. angustifolia, and the effect of enhanced UV-B radiation was even larger.


Subject(s)
Biomass , Ultraviolet Rays , Vicia/growth & development , Vicia/radiation effects , China , Computer Simulation , Ecosystem , Vicia/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...