Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Circ Res ; 104(4): 488-95, 2009 Feb 27.
Article in English | MEDLINE | ID: mdl-19150884

ABSTRACT

Large vessel vasculitides, such as Takayasu arteritis and giant cell arteritis, affect vital arteries and cause clinical complications by either luminal occlusion or vessel wall destruction. Inflammatory infiltrates, often with granulomatous arrangements, are distributed as a panarteritis throughout all of the artery's wall layers or cluster in the adventitia as a perivasculitis. Factors determining the architecture and compartmentalization of vasculitis are unknown. Human macrovessels are populated by indigenous dendritic cells (DCs) positioned in the adventitia. Herein, we report that these vascular DCs sense bacterial pathogens and regulate the patterning of the emerging arteritis. In human temporal artery-SCID chimeras, lipopolysaccharides stimulating Toll-like receptor (TLR)4 and flagellin stimulating TLR5 trigger vascular DCs and induce T-cell recruitment and activation. However, the architecture of the evolving inflammation is ligand-specific; TLR4 ligands cause transmural panarteritis and TLR5 ligands promote adventitial perivasculitis. Underlying mechanisms involve selective recruitment of functional T cell subsets. Specifically, TLR4-mediated DC stimulation markedly enhances production of the chemokine CCL20, biasing recruitment toward CCL20-responsive CCR6(+) T cells. In adoptive transfer experiments, CCR6(+) T cells produce an arteritis pattern with media-invasive T cells damaging vascular smooth muscle cells. Also, CCR6(+) T cells dominate the vasculitic infiltrates in patients with panarteritic giant cell arteritis. Thus, depending on the original danger signal, vascular DCs edit the emerging immune response by differentially recruiting specialized T effector cells and direct the disease process toward distinct types of vasculitis.


Subject(s)
Dendritic Cells/immunology , Giant Cell Arteritis/immunology , Lymphocyte Activation , T-Lymphocyte Subsets/immunology , Temporal Arteries/immunology , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 5/metabolism , Adjuvants, Immunologic/pharmacology , Adoptive Transfer , Animals , Cells, Cultured , Chemokine CCL20/metabolism , Chemotaxis, Leukocyte , Dendritic Cells/drug effects , Disease Models, Animal , Giant Cell Arteritis/pathology , Humans , Ligands , Lymphocyte Activation/drug effects , Mice , Mice, SCID , Muscle, Smooth, Vascular/immunology , Muscle, Smooth, Vascular/pathology , Receptors, CCR6/metabolism , Signal Transduction , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/transplantation , Temporal Arteries/drug effects , Temporal Arteries/pathology , Temporal Arteries/transplantation , Tissue Culture Techniques
2.
Circulation ; 118(12): 1276-84, 2008 Sep 16.
Article in English | MEDLINE | ID: mdl-18765390

ABSTRACT

BACKGROUND: Inflammatory vasculopathies, ranging from the vasculitides (Takayasu arteritis, giant cell arteritis, and polyarteritis nodosa) to atherosclerosis, display remarkable target tissue tropisms for selected vascular beds. Molecular mechanisms directing wall inflammation to restricted anatomic sites within the vascular tree are not understood. We have examined the ability of 6 different human macrovessels (aorta and subclavian, carotid, mesenteric, iliac, and temporal arteries) to initiate innate and adaptive immune responses by comparing pathogen-sensing and T-cell-stimulatory capacities. METHODS AND RESULTS: Gene expression analysis for pathogen-sensing Toll-like receptors (TLRs) 1 to 9 showed vessel-specific profiles, with TLR2 and TLR4 ubiquitously present, TLR7 and TLR9 infrequent, and TLR1, TLR3, TLR5, TLR6, and TLR8 expressed in selective patterns. Experiments with vessel walls stripped of the intimal or adventitial layer identified dendritic cells at the media-adventitia junction as the dominant pathogen sensors. In human artery-severe combined immunodeficiency (SCID) mouse chimeras, adoptively transferred human T cells initiated vessel wall inflammation if wall-embedded dendritic cells were conditioned with TLR ligands. Wall-infiltrating T cells displayed vessel-specific activation profiles with differential production of CD40L, lymphotoxin-alpha, and interferon-gamma. Vascular bed-specific TLR fingerprints were functionally relevant, as exemplified by differential responsiveness of iliac and subclavian vessels to TLR5 but not TLR4 ligands. CONCLUSIONS: Populated by indigenous dendritic cells, medium and large human arteries have immune-sensing and T-cell-stimulatory functions. Each vessel in the macrovascular tree exhibits a distinct TLR profile and supports selective T-cell responses, imposing vessel-specific risk for inflammatory vasculopathies.


Subject(s)
Arteries/physiology , Gene Expression Profiling , Toll-Like Receptors/physiology , Arteries/anatomy & histology , Female , Gene Expression Profiling/methods , Humans , Male , Middle Aged , Organ Culture Techniques , Toll-Like Receptors/classification
3.
J Mol Med (Berl) ; 86(4): 443-55, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18253710

ABSTRACT

Dendritic cells (DCs) shape T-cell response patterns and determine early, intermediate, and late outcomes of immune recognition events. They either facilitate immunostimulation or induce tolerance, possibly determined by initial DC activation signals, such as binding Toll-like receptor (TLR) ligands. Here, we report that DC stimulation through the TLR3 ligand dsRNA [poly(I:C)] limits CD4 T-cell proliferation, curtailing adaptive immune responses. CD4+ T cells instructed by either lipopolysaccharide (LPS) or poly(I:C)-conditioned DCs promptly upregulated the activation marker CD69. Whereas LPS-pretreated DCs subsequently sustained T-cell clonal expansion, proliferation of CD4+ T cells exposed to poly(I:C)-pretreated DCs was markedly suppressed. This proliferative defect required DC-T cell contact, was independent of IFN-alpha, and was overcome by exogenous IL-2, indicating T-cell anergy. Coinciding with the downregulation, CD4+ T cells expressed the inhibitory receptor PD-1. Antibodies blocking the PD-1 ligand PD-L1 restored proliferation. dsRNA-stimulated DCs preferentially induced PD-L1, whereas poly(I:C) and LPS both upregulated the costimulatory molecule CD86 to a comparable extent. Poly(dA-dT), a ligand targeting the cytoplasmic RNA helicase pattern-recognition pathway, failed to selectively induce PD-L1 upregulation, assigning this effect to the TLR3 pathway. Poly(I:C)-conditioned DCs promoted accumulation of phosphorylated SHP-2, the intracellular phosphatase mediating PD-1 inhibitory effects. The ability of dsRNA to bias DC differentiation toward providing inhibitory signals to interacting CD4+ T cells may be instrumental in viral immune evasion. Conversely, TLR3 ligands may have therapeutic value in silencing pathogenic immune responses.


Subject(s)
Dendritic Cells/immunology , Ligands , Toll-Like Receptor 3/immunology , CD4-Positive T-Lymphocytes/immunology , Humans , Interferon-alpha/immunology , Lipopolysaccharides/immunology , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism
4.
Circ Res ; 102(5): 546-53, 2008 Mar 14.
Article in English | MEDLINE | ID: mdl-18202318

ABSTRACT

Human medium-sized and large arteries are targeted by inflammation with innate and adaptive immune responses occurring within the unique microspace of the vessel wall. How 3D spatial arrangements influence immune recognition and cellular response thresholds and which cell populations sense immunoactivating ligands and function as antigen-presenting cells are incompletely understood. To mimic the 3D context of human arteries, bioartificial arteries were engineered from collagen type I matrix, human vascular smooth muscle cells (VSMCs), and human endothelial cells and populated with cells implicated in antigen presentation and T-cell stimulation, including monocytes, macrophages, and myeloid dendritic cells (DCs). Responsiveness of wall-embedded antigen-presenting cells was probed with the Toll-like receptor ligand lipopolysaccharide, and inflammation was initiated by adding autologous CD4(+) T cells. DCs colonized the outermost VSMC layer, recapitulating their positioning at the media-adventitia border of normal arteries. Wall-embedded DCs responded to the microbial product lipopolysaccharide by entering the maturation program and upregulating the costimulatory ligand CD86. Activated DCs effectively stimulated autologous CD4 T cells, which produced the proinflammatory cytokine interferon-gamma and infiltrated deeply into the VSMC layer, causing matrix damage. Lipopolysaccharide-triggered macrophages were significantly less efficacious in recruiting T cells and promoting T-cell stimulation. CD14(+) monocytes, even when preactivated, failed to support initial steps of vascular wall inflammation. Innate immune cells, including monocytes, macrophages, and DCs, display differential functions in the vessel wall. DCs are superior in sensing pathogen-derived motifs and are highly efficient in breaking T-cell tolerance, guiding T cells toward proinflammatory and tissue-invasive behavior.


Subject(s)
Arteries/immunology , Arteritis/immunology , Dendritic Cells/immunology , Models, Biological , Muscle, Smooth, Vascular/immunology , T-Lymphocytes/immunology , Animals , Antigen Presentation , Arteries/cytology , Arteries/drug effects , Cell Count , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cells, Cultured , Coculture Techniques , Dendritic Cells/cytology , Dendritic Cells/drug effects , Humans , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Macrophages/immunology , Monocytes/cytology , Monocytes/drug effects , Monocytes/immunology , Muscle, Smooth, Vascular/cytology , Rats , T-Lymphocytes/cytology , Tissue Engineering , Toll-Like Receptor 4/drug effects
5.
Circ Res ; 98(4): 524-31, 2006 Mar 03.
Article in English | MEDLINE | ID: mdl-16424368

ABSTRACT

CD4 T cells, through the release of cytokines as well as direct effector functions, have been implicated in promoting inflammation of the atherosclerotic plaque. Plaque-infiltrating CD4 T cells include a specialized subset of (CD4+)CD28- T cells that express a unique profile of regulatory receptors and are responsive to novel microenvironmental cues. Here we report that (CD4+)CD28- T cells, either isolated from the plaque tissue or from the blood of patients with acute coronary syndrome (ACS), spontaneously express interleukin (IL)-12 receptors, even in the absence of antigenic stimulation. (CD4+)CD28- IL-12R+ cells responded to IL-12 stimulation with the upregulation of the chemokine receptor CCR5 and the C-type lectin receptor CD161, both implicated in regulating tissue homing of effector T cells. IL-12 treatment of (CD4+)CD28- T cells enhanced their chemotaxis and transendothelial migration toward the chemokine CCL5. In vivo relevance for the role of IL-12 in regulating the recruitment of (CD4+)CD28- T cells into the atheroma was examined in human atheroma-SCID mouse chimeras. Exposure of nonstimulated (CD4+)CD28- T cells to IL-12 was sufficient to amplify T-cell accumulation within the inflamed plaque, and coadministration of anti-CCR5 antibodies blocked T-cell recruitment into the plaque. Thus, (CD4+)CD28- T cells functionally resemble NK cells, which have proinflammatory activity even in the unprimed state and respond to any IL-12-inducing host infection with a shift in tissue trafficking and accrual in inflammatory lesions.


Subject(s)
Atherosclerosis/pathology , CD4-Positive T-Lymphocytes/drug effects , Interleukin-12/pharmacology , Aged , Animals , Atherosclerosis/immunology , CD28 Antigens/analysis , CD4-Positive T-Lymphocytes/physiology , Cell Movement/drug effects , Chemotaxis/drug effects , Coronary Disease/immunology , Female , Humans , Male , Mice , Mice, SCID , Receptors, CCR5/physiology , Receptors, Interleukin/analysis , Receptors, Interleukin-12
6.
Clin Immunol ; 115(1): 38-46, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15870019

ABSTRACT

Giant cell arteritis, a primary vasculitis of medium-sized and large arteries, causes vessel occlusion through fast and concentric intimal hyperplasia. Contextual parameters, especially the topography of the arterial wall, have emerged as critical pathogenic elements. Experimental data support the concept that the disease is initiated in the most outer layer of the arterial wall, the adventitia. CD4 T cells are recruited to the adventitia, undergo local activation and subsequently orchestrate macrophage differentiation. T cells and macrophages infiltrate into all wall layers and acquire different effector functions dependent on cues in their immediate microenvironment. The end result is myofibroblastic proliferation, luminal stenosis, and tissue ischemia. Adaptive immune responses in the adventitia are triggered by a population of indigenous dendritic cells (DC) placed at the adventitia-media junction. These arterial DCs have a unique surface receptor profile, including a series of Toll-like receptors (TLR). Responsiveness of such arterial DCs to blood-borne stimuli has been studied in human arteries engrafted into immunodeficient mice. Ligands of TLR4 are able to start maturation of adventitial DCs which fail to leave the peripheral tissue site. Instead, these adventitial DCs produce chemokines, recruit T cells, and support their local activation. These data identify tissue-residing DCs as gatekeepers in vasculitis and support the model that TLR ligands function as instigators of vessel wall inflammation.


Subject(s)
Dendritic Cells/immunology , Giant Cell Arteritis/immunology , Membrane Glycoproteins/immunology , Receptors, Cell Surface/immunology , Animals , Connective Tissue/immunology , Connective Tissue/ultrastructure , Giant Cell Arteritis/pathology , Humans , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , Toll-Like Receptor 4 , Toll-Like Receptors
7.
Future Cardiol ; 1(5): 657-74, 2005 Sep.
Article in English | MEDLINE | ID: mdl-19804106

ABSTRACT

Atherosclerosis and its clinical complications are now understood to be an inflammatory syndrome in which an ongoing systemic inflammatory response is combined with the accumulation of immune cells in the atherosclerotic plaque. Both arms of the immune system, innate and adaptive, have been implicated in contributing to essentially all stages of atherosclerosis, from initiation to progression and, ultimately, atherothrombotic complications. Innate immunity is the first line of defense against invading microorganisms. The recognition units of the innate immune system are designed to respond to molecular patterns shared by a variety of infectious microorganisms, such as bacterial lipopolysaccharide. Numerous basic and clinical studies have provided evidence that responsiveness to lipopolysaccharide may be correlated to the risk of atherosclerotic disease. The molecular basis of this connection appears to lie in Toll-like receptors that are expressed on cells of the innate immune system, bind to lipopolysaccharide, and thus determine the strength of antibacterial immune responses in the host. Variations in the function of Toll-like receptors and their signaling pathways are now suspected to play a critical role in determining the risk of atherosclerosis. This review summarizes recent research advances exploring the role of innate immunity, particularly lipopolysaccharide, CD14 and Toll-like receptors, in the initiation and development of atherosclerotic disease.

8.
Ann N Y Acad Sci ; 1062: 195-208, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16461802

ABSTRACT

Giant cell arteritis (GCA) is a granulomatous vasculitis that selectively targets medium-sized and large arteries, especially the cranial branches of the aorta. The inflammatory activity of vascular lesions is driven by adaptive immune responses, with CD4 T cells undergoing clonal expansion in the vessel wall and releasing interferon gamma. Recent studies have described a distinctive population of dendritic cells (DCs) localized at the adventitia-media border of normal medium-sized arteries that appear to play a critical role in the initiation of vasculitis. Immune effector functions of this DC population are being examined in human artery-severe combined immunodeficient (SCID) mouse chimeras. In their constitutive form, CD11c+ fascin+ adventitial DCs are not recognized by alloreactive T cells. Triggering with Toll-like receptor (TLR) ligands is sufficient to break this state of tolerance and initiate DC activation, T-cell recruitment, T-cell activation, and T-cell retention in the arterial wall. Systemic administration of ligands for TLR2 or -4 in human artery-SCID chimeras drives differentiation of adventitial DCs into chemokine-producing effector cells with high-level expression of both CD83 and CD86 and mediates T-cell regulatory function through release of interleukin 18. In established vasculitis, fully matured DCs retain antigen-presenting function; antibody-mediated DC depletion disrupts T-cell and macrophage activation and has marked anti-inflammatory effects. We conclude that adventitial DCs, an indigenous cell population of the arterial wall, are responsive to pathogen-derived macromolecules and have gatekeeper function in regulating T-cell recruitment and retention to the arterial adventitia. A switch of adventitial DCs from being nonstimulatory to T-cell activating emerges as a critical event in the initiation of vasculitis.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/pathology , Giant Cell Arteritis , Giant Cell Arteritis/blood , Giant Cell Arteritis/immunology , Giant Cell Arteritis/pathology , Humans
9.
Autoimmun Rev ; 3(1): 46-53, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14871649

ABSTRACT

Giant cell arteritis (GCA), a vasculitis that targets medium- and large-size arteries, is ranked as a medical emergency because of its potential to cause blindness and stroke. The typical lesions, granulomas in the vessel wall, are formed by IFN-gamma-producing CD4+ T cells and macrophages. CD4+ T cells undergo in situ activation in the adventitia, where they interact with indigenous dendritic cells. Tissue injury is mediated by several distinct sets of macrophages that are committed to diverse effector functions. The dominant tissue injury in the media results from oxidative stress and leads to smooth muscle cell apoptosis and nitration of endothelial cells. Macrophage-derived growth factors are instrumental in driving the response-to-injury program of the artery that causes intimal hyperplasia and vessel occlusion. Clinical manifestations are those of tissue ischemia or a syndrome of exuberant systemic inflammation. The vascular and the systemic components of GCA contribute differentially to the disease, leading to distinct clinical phenotypes of this arteritis. Immunologically most interesting is polymyalgia rheumatica, in which the systemic component is combined with aborted vasculitis, suggesting a role for artery-specific tolerance mechanisms.


Subject(s)
Giant Cell Arteritis/immunology , Macrophages/metabolism , Myocytes, Smooth Muscle/metabolism , Polymyalgia Rheumatica/immunology , T-Lymphocytes/metabolism , Apoptosis/physiology , Granuloma/immunology , Humans , Oxidative Stress , Vasculitis/immunology
10.
J Exp Med ; 199(2): 173-83, 2004 Jan 19.
Article in English | MEDLINE | ID: mdl-14734523

ABSTRACT

Giant cell arteritis (GCA) is a granulomatous and occlusive vasculitis that causes blindness, stroke, and aortic aneurysm. CD4(+) T cells are selectively activated in the adventitia of affected arteries. In human GCA artery-severe combined immunodeficiency (SCID) mouse chimeras, depletion of CD83(+) dendritic cells (DCs) abrogated vasculitis, suggesting that DCs are critical antigen-presenting cells in GCA. Healthy medium-size arteries possessed an indigenous population of DCs at the adventitia-media border. Adoptive T cell transfer into temporal artery-SCID mouse chimeras demonstrated that DCs in healthy arteries were functionally immature, but gained T cell stimulatory capacity after injection of lipopolysaccharide. In patients with polymyalgia rheumatica (PMR), a subclinical variant of GCA, adventitial DCs were mature and produced the chemokines CCL19 and CCL21, but vasculitic infiltrates were lacking. Human histocompatibility leukocyte antigen class II-matched healthy arteries, PMR arteries, and GCA arteries were coimplanted into SCID mice. Immature DCs in healthy arteries failed to stimulate T cells, but DCs in PMR arteries could attract, retain, and activate T cells that originated from the GCA lesions. We propose that in situ maturation of DCs in the adventitia is an early event in the pathogenesis of GCA. Activation of adventitial DCs initiates and maintains T cell responses in the artery and breaks tissue tolerance in the perivascular space.


Subject(s)
Dendritic Cells/immunology , Giant Cell Arteritis/immunology , Adoptive Transfer , Animals , Base Sequence , CD4-Positive T-Lymphocytes/immunology , Chimera , DNA Primers/genetics , Dendritic Cells/pathology , Giant Cell Arteritis/genetics , Giant Cell Arteritis/pathology , Humans , Mice , Mice, SCID , Self Tolerance , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...