Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3321, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637578

ABSTRACT

Trait-based frameworks are promising tools to understand the functional consequences of community shifts in response to environmental change. The applicability of these tools to soil microbes is limited by a lack of functional trait data and a focus on categorical traits. To address this gap for an important group of soil microorganisms, we identify trade-offs underlying a fungal economics spectrum based on a large trait collection in 28 saprobic fungal isolates, derived from a common grassland soil and grown in culture plates. In this dataset, ecologically relevant trait variation is best captured by a three-dimensional fungal economics space. The primary explanatory axis represents a dense-fast continuum, resembling dominant life-history trade-offs in other taxa. A second significant axis reflects mycelial flexibility, and a third one carbon acquisition traits. All three axes correlate with traits involved in soil carbon cycling. Since stress tolerance and fundamental niche gradients are primarily related to the dense-fast continuum, traits of the 2nd (carbon-use efficiency) and especially the 3rd (decomposition) orthogonal axes are independent of tested environmental stressors. These findings suggest a fungal economics space which can now be tested at broader scales.


Subject(s)
Mycelium , Soil , Fungi , Carbon , Soil Microbiology , Ecosystem
2.
3.
PLoS Comput Biol ; 16(11): e1008313, 2020 11.
Article in English | MEDLINE | ID: mdl-33211687

ABSTRACT

When running a lab we do not think about calamities, since they are rare events for which we cannot plan while we are busy with the day-to-day management and intellectual challenges of a research lab. No lab team can be prepared for something like a pandemic such as COVID-19, which has led to shuttered labs around the globe. But many other types of crises can also arise that labs may have to weather during their lifetime. What can researchers do to make a lab more resilient in the face of such exterior forces? What systems or behaviors could we adjust in 'normal' times that promote lab success, and increase the chances that the lab will stay on its trajectory? We offer 10 rules, based on our current experiences as a lab group adapting to crisis.


Subject(s)
COVID-19/psychology , Laboratory Personnel/psychology , COVID-19/epidemiology , COVID-19/virology , Cooperative Behavior , Humans , Interprofessional Relations , Pandemics , Personnel Staffing and Scheduling , SARS-CoV-2/isolation & purification , Social Media , Uncertainty
4.
PLoS One ; 14(11): e0224179, 2019.
Article in English | MEDLINE | ID: mdl-31675381

ABSTRACT

Biochar is being discussed as a soil amendment to improve soil fertility and mitigate climate change. While biochar interactions with soil microbial biota have been frequently studied, interactions with soil mesofauna are understudied. We here present an experiment in which we tested if the collembolan Folsomia candida I) can transport biochar particles, II) if yes, how far the particles are distributed within 10 days, and III) if it shows a preference among biochars made from different feedstocks, i.e. pine wood, pine bark and spelt husks. In general, biochar particles based on pine bark and pine wood were consistently distributed significantly more than those made of spelt husks, but all types were transported more than 4cm within 10 days. Additionally, we provide evidence that biochar particles can become readily attached to the cuticle of collembolans and hence be transported, potentially even over large distances. Our study shows that the soil mesofauna can indeed act as a vector for the transport of biochar particles and show clear preferences depending on the respective feedstock, which would need to be studied in more detail in the future.


Subject(s)
Arthropods/metabolism , Charcoal/metabolism , Animals , Pinus sylvestris , Soil , Soil Microbiology
5.
Front Microbiol ; 10: 2904, 2019.
Article in English | MEDLINE | ID: mdl-31998249

ABSTRACT

Soil structure, the complex arrangement of soil into aggregates and pore spaces, is a key feature of soils and soil biota. Among them, filamentous saprobic fungi have well-documented effects on soil aggregation. However, it is unclear what properties, or traits, determine the overall positive effect of fungi on soil aggregation. To achieve progress, it would be helpful to systematically investigate a broad suite of fungal species for their trait expression and the relation of these traits to soil aggregation. Here, we apply a trait-based approach to a set of 15 traits measured under standardized conditions on 31 fungal strains including Ascomycota, Basidiomycota, and Mucoromycota, all isolated from the same soil. We find large differences among these fungi in their ability to aggregate soil, including neutral to positive effects, and we document large differences in trait expression among strains. We identify biomass density, i.e., the density with which a mycelium grows (positive effects), leucine aminopeptidase activity (negative effects) and phylogeny as important factors explaining differences in soil aggregate formation (SAF) among fungal strains; importantly, growth rate was not among the important traits. Our results point to a typical suite of traits characterizing fungi that are good soil aggregators, and our findings illustrate the power of employing a trait-based approach to unravel biological mechanisms underpinning soil aggregation. Such an approach could now be extended also to other soil biota groups. In an applied context of restoration and agriculture, such trait information can inform management, for example to prioritize practices that favor the expression of more desirable fungal traits.

6.
Environ Pollut ; 225: 456-459, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28318789

ABSTRACT

Plastics, despite their great benefits, have become a ubiquitous environmental pollutant, with microplastic particles having come into focus most recently. Microplastic effects have been intensely studied in aquatic, especially marine systems; however, there is lack of studies focusing on effects on soil and its biota. A basic question is if and how surface-deposited microplastic particles are transported into the soil. We here wished to test if soil microarthropods, using Collembola, can transport these particles over distances of centimeters within days in a highly controlled experimental set-up. We conducted a fully factorial experiment with two collembolan species of differing body size, Folsomia candida and Proisotoma minuta, in combination with urea-formaldehyde particles of two different particle sizes. We observed significant differences between the species concerning the distance the particles were transported. F. candida was able to transport larger particles further and faster than P. minuta. Using video, we observed F. candida interacting with urea-formaldehyde particles and polyethylene terephthalate fibers, showing translocation of both material types. Our data clearly show that microplastic particles can be moved and distributed by soil microarthropods. Although we did not observe feeding, it is possible that microarthropods contribute to the accumulation of microplastics in the soil food web.


Subject(s)
Arthropods/physiology , Plastics/analysis , Soil Pollutants/analysis , Animals , Biota , Environmental Monitoring , Environmental Pollution , Food Chain , Plastics/metabolism , Soil Pollutants/metabolism
7.
Ecol Evol ; 4(24): 4766-74, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25558367

ABSTRACT

Beta diversity describes how local communities within an area or region differ in species composition/abundance. There have been attempts to use changes in beta diversity as a biotic indicator of disturbance, but lack of theory and methodological caveats have hampered progress. We here propose that the neutral theory of biodiversity plus the definition of beta diversity as the total variance of a community matrix provide a suitable, novel, starting point for ecological applications. Observed levels of beta diversity (BD) can be compared to neutral predictions with three possible outcomes: Observed BD equals neutral prediction or is larger (divergence) or smaller (convergence) than the neutral prediction. Disturbance might lead to either divergence or convergence, depending on type and strength. We here apply these ideas to datasets collected on oribatid mites (a key, very diverse soil taxon) under several regimes of disturbances. When disturbance is expected to increase the heterogeneity of soil spatial properties or the sampling strategy encompassed a range of diverging environmental conditions, we observed diverging assemblages. On the contrary, we observed patterns consistent with neutrality when disturbance could determine homogenization of soil properties in space or the sampling strategy encompassed fairly homogeneous areas. With our method, spatial and temporal changes in beta diversity can be directly and easily monitored to detect significant changes in community dynamics, although the method itself cannot inform on underlying mechanisms. However, human-driven disturbances and the spatial scales at which they operate are usually known. In this case, our approach allows the formulation of testable predictions in terms of expected changes in beta diversity, thereby offering a promising monitoring tool.

SELECTION OF CITATIONS
SEARCH DETAIL
...