Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22278576

ABSTRACT

BackgroundImmunocompromised patients may be at higher risk of mortality if hospitalised with COVID-19 compared with immunocompetent patients. However, previous studies have been contradictory. We aimed to determine whether immunocompromised patients were at greater risk of in-hospital death, and how this risk changed over the pandemic. MethodsWe included patients >=19yrs with symptomatic community-acquired COVID-19 recruited to the ISARIC WHO Clinical Characterisation Protocol UK. We defined immunocompromise as: immunosuppressant medication preadmission, cancer treatment, organ transplant, HIV, or congenital immunodeficiency. We used logistic regression to compare the risk of death in both groups, adjusting for age, sex, deprivation, ethnicity, vaccination and co-morbidities. We used Bayesian logistic regression to explore mortality over time. FindingsBetween 17/01/2020 and 28/02/2022 we recruited 156,552 eligible patients, of whom 21,954 (14%) were immunocompromised. 29% (n=6,499) of immunocompromised and 21% (n=28,608) of immunocompetent patients died in hospital. The odds of in-hospital mortality were elevated for immunocompromised patients (adjOR 1.44, 95% CI 1.39-1.50, p<0.001). As the pandemic progressed, in-hospital mortality reduced more slowly for immunocompromised patients than for immunocompetent patients. This was particularly evident with increasing age: the probability of the reduction in hospital mortality being less for immunocompromised patients aged 50-69yrs was 88% for men and 83% for women, and for those >80yrs was 99% for men, and 98% for women. ConclusionsImmunocompromised patients remain at elevated risk of death from COVID-19. Targeted measures such as additional vaccine doses and monoclonal antibodies should be considered for this group. FundingNational Institute for Health Research; Medical Research Council; Chief Scientist Office, Scotland.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20182238

ABSTRACT

The increasing body of literature describing the role of host factors in COVID-19 pathogenesis demonstrates the need to combine diverse, multi-omic data to evaluate and substantiate the most robust evidence and inform development of therapies. Here we present a dynamic ranking of host genes implicated in human betacoronavirus infection (SARS-CoV-2, SARS-CoV, MERS-CoV, seasonal coronaviruses). Researchers can search and review the ranked genes and the contribution of different experimental methods to gene rank at https://baillielab.net/maic/covid19. We conducted an extensive systematic review of experiments identifying potential host factors. Gene lists from diverse sources were integrated using Meta-Analysis by Information Content (MAIC). This previously described algorithm uses data-driven gene list weightings to produce a comprehensive ranked list of implicated host genes. From 32 datasets, the top ranked gene was PPIA, encoding cyclophilin A, a drug-gable target using cyclosporine.Other highly-ranked genes included proposed prognostic factors (CXCL10, CD4, CD3E) and investigational therapeutic targets (IL1A) for COVID-19. Gene rankings also inform the interpretation of COVID-19 GWAS results, implicating FYCO1 over other nearby genes in a disease-associated locus on chromosome 3. As new data are published we will regularly update list of genes as a resource to inform and prioritise future studies.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20168088

ABSTRACT

BackgroundSevere COVID-19 is characterised by fever, cough, and dyspnoea. Symptoms affecting other organ systems have been reported. However, it is the clinical associations of different patterns of symptoms which influence diagnostic and therapeutic decision-making. In this study, we applied simple machine learning techniques to a large prospective cohort of hospitalised patients with COVID-19 identify clinically meaningful sub-groups. MethodsWe obtained structured clinical data on 59 011 patients in the UK (the ISARIC Coronavirus Clinical Characterisation Consortium, 4C) and used a principled, unsupervised clustering approach to partition the first 25 477 cases according to symptoms reported at recruitment. We validated our findings in a second group of 33 534 cases recruited to ISARIC-4C, and in 4 445 cases recruited to a separate study of community cases. FindingsUnsupervised clustering identified distinct sub-groups. First, a core symptom set of fever, cough, and dyspnoea, which co-occurred with additional symptoms in three further patterns: fatigue and confusion, diarrhoea and vomiting, or productive cough. Presentations with a single reported symptom of dyspnoea or confusion were common, and a subgroup of patients reported few or no symptoms. Patients presenting with gastrointestinal symptoms were more commonly female, had a longer duration of symptoms before presentation, and had lower 30-day mortality. Patients presenting with confusion, with or without core symptoms, were older and had a higher unadjusted mortality. Symptom clusters were highly consistent in replication analysis using a further 35446 individuals subsequently recruited to ISARIC-4C. Similar patterns were externally verified in 4445 patients from a study of self-reported symptoms of mild disease. InterpretationThe large scale of the ISARIC-4C study enabled robust, granular discovery and replication of patient clusters. Clinical interpretation is necessary to determine which of these observations have practical utility. We propose that four patterns are usefully distinct from the core symptom groups: gastro-intestinal disease, productive cough, confusion, and pauci-symptomatic presentations. Importantly, each is associated with an in-hospital mortality which differs from that of patients with core symptoms. These observations deepen our understanding of COVID-19 and will influence clinical diagnosis, risk prediction, and future mechanistic and clinical studies. FundingMedical Research Council; National Institute Health Research; Well-come Trust; Department for International Development; Bill and Melinda Gates Foundation; Liverpool Experimental Cancer Medicine Centre.

SELECTION OF CITATIONS
SEARCH DETAIL
...