Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Health Geogr ; 7: 24, 2008 May 22.
Article in English | MEDLINE | ID: mdl-18498647

ABSTRACT

BACKGROUND: Lyme disease is the commonest vector-borne zoonosis in the temperate world, and an emerging infectious disease in Canada due to expansion of the geographic range of the tick vector Ixodes scapularis. Studies suggest that climate change will accelerate Lyme disease emergence by enhancing climatic suitability for I. scapularis. Risk maps will help to meet the public health challenge of Lyme disease by allowing targeting of surveillance and intervention activities. RESULTS: A risk map for possible Lyme endemicity was created using a simple risk algorithm for occurrence of I. scapularis populations. The algorithm was calculated for each census sub-division in central and eastern Canada from interpolated output of a temperature-driven simulation model of I. scapularis populations and an index of tick immigration. The latter was calculated from estimates of tick dispersion distances by migratory birds and recent knowledge of the current geographic range of endemic I. scapularis populations. The index of tick immigration closely predicted passive surveillance data on I. scapularis occurrence, and the risk algorithm was a significant predictor of the occurrence of I. scapularis populations in a prospective field study. Risk maps for I. scapularis occurrence in Canada under future projected climate (in the 2020s, 2050s and 2080s) were produced using temperature output from the Canadian Coupled Global Climate Model 2 with greenhouse gas emission scenario enforcing 'A2' of the Intergovernmental Panel on Climate Change. CONCLUSION: We have prepared risk maps for the occurrence of I. scapularis in eastern and central Canada under current and future projected climate. Validation of the risk maps provides some confidence that they provide a useful first step in predicting the occurrence of I. scapularis populations, and directing public health objectives in minimizing risk from Lyme disease. Further field studies are needed, however, to continue validation and refinement of the risk maps.


Subject(s)
Arachnid Vectors/growth & development , Greenhouse Effect , Ixodes/growth & development , Lyme Disease/epidemiology , Tick Infestations/epidemiology , Algorithms , Animal Migration , Animals , Arachnid Vectors/virology , Birds/parasitology , Canada/epidemiology , Geographic Information Systems , Humans , Ixodes/virology , Logistic Models , Lyme Disease/transmission , Lyme Disease/virology , Maps as Topic , Risk Assessment , Rodentia/parasitology
2.
Int J Biometeorol ; 50(6): 385-91, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16575582

ABSTRACT

The incidence of enteric infections in the Canadian population varies seasonally, and may be expected to be change in response to global climate changes. To better understand any potential impact of warmer temperature on enteric infections in Canada, we investigated the relationship between ambient temperature and weekly reports of confirmed cases of three pathogens in Canada: Salmonella, pathogenic Escherichia coli and Campylobacter, between 1992 and 2000 in two Canadian provinces. We used generalized linear models (GLMs) and generalized additive models (GAMs) to estimate the effect of seasonal adjustments on the estimated models. We found a strong non-linear association between ambient temperature and the occurrence of all three enteric pathogens in Alberta, Canada, and of Campylobacter in Newfoundland-Labrador. Threshold models were used to quantify the relationship of disease and temperature with thresholds chosen from 0 to -10 degrees C depending on the pathogen modeled. For Alberta, the log relative risk of Salmonella weekly case counts increased by 1.2%, Campylobacter weekly case counts increased by 2.2%, and E. coli weekly case counts increased by 6.0% for every degree increase in weekly mean temperature. For Newfoundland-Labrador the log relative risk increased by 4.5% for Campylobacter for every degree increase in weekly mean temperature.


Subject(s)
Gram-Negative Bacterial Infections/epidemiology , Intestinal Diseases/epidemiology , Intestinal Diseases/microbiology , Temperature , Alberta/epidemiology , Gram-Negative Bacteria/isolation & purification , Humans , Newfoundland and Labrador/epidemiology
3.
Int J Environ Health Res ; 16(3): 167-80, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16611562

ABSTRACT

Recent outbreaks of Escherichia coli O157:H7, Campylobacter, and Cryptosporidium have heightened awareness of risks associated with contaminated water supply. The objectives of this research were to describe the incidence and distribution of waterborne disease outbreaks in Canada in relation to preceding weather conditions and to test the association between high impact weather events and waterborne disease outbreaks. We examined extreme rainfall and spring snowmelt in association with 92 Canadian waterborne disease outbreaks between 1975 and 2001, using case-crossover methodology. Explanatory variables including accumulated rainfall, air temperature, and peak stream flow were used to determine the relationship between high impact weather events and the occurrence of waterborne disease outbreaks. Total maximum degree-days above 0 degrees C and accumulated rainfall percentile were associated with outbreak risk. For each degree-day above 0 degrees C the relative odds of an outbreak increased by a factor of 1.007 (95% confidence interval [CI] = 1.002 - 1.012). Accumulated rainfall percentile was dichotomized at the 93rd percentile. For rainfall events greater than the 93rd percentile the relative odds of an outbreak increased by a factor of 2.283 (95% [CI] = 1.216 - 4.285). These results suggest that warmer temperatures and extreme rainfall are contributing factors to waterborne disease outbreaks in Canada. This could have implications for water management and public health initiatives.


Subject(s)
Climate , Communicable Diseases/epidemiology , Disease Outbreaks , Rain , Water Microbiology , Water Pollution/adverse effects , Animals , Campylobacter/isolation & purification , Campylobacter/pathogenicity , Canada/epidemiology , Communicable Diseases/microbiology , Cryptosporidium/isolation & purification , Cryptosporidium/pathogenicity , Escherichia coli O157/isolation & purification , Escherichia coli O157/pathogenicity , Humans , Temperature , Time Factors , Water Movements , Weather
4.
Int J Biometeorol ; 49(3): 156-66, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15338386

ABSTRACT

Several studies have shown that atmospheric conditions can affect well-being or disease, and that some individuals seem to be more sensitive to weather than others. Since epidemiological data on the prevalence of weather-related health effects are lacking, two representative weather sensitivity (WS) surveys were conducted independently in Germany and Canada. The objectives of this paper are: (1) to identify the prevalence of WS in Germany and Canada, (2) to describe weather-related symptoms and the corresponding weather conditions, and (3) to compare the findings in the two countries. In Germany 1,064 citizens (age >16 years) were interviewed in January 2001, and in Canada 1,506 persons (age >18 years) were interviewed in January 1994. The results showed that 19.2% of the German population thought that weather affected their health "to a strong degree," 35.3% that weather had "some influence on their health" (sum of both = 54.5% weather sensitive), whereas the remaining 45.5% did not consider that weather had an effect on their health status. In Canada 61% of the respondents considered themselves to be sensitive to the weather. The highest prevalence of WS (high + some influence) in Germans was found in the age group older than 60 years (68%), which was almost identical in the Canadian population (69%). The highest frequencies of weather-related symptoms were reported in Germany for stormy weather (30%) and when it became colder (29%). In Canada mainly cold weather (46%), dampness (21%) and rain (20%) were considered to affect health more than other weather types. The most frequent symptoms reported in Germany were headache/migraine (61%), lethargy (47%), sleep disturbances (46%), fatigue (42%), joint pain (40%), irritation (31%), depression (27%), vertigo (26%), concentration problems (26%) and scar pain (23%). Canadian weather-sensitive persons reported colds (29%), psychological effects (28%) and painful joints, muscles or arthritis (10%). In Germany 32% of the weather-sensitive subjects reported themselves to be unable to do their regular work because of weather-related symptoms at least once in the previous year, and 22% of them several times. Co-morbidity was significantly higher in weather-sensitive subjects both in Germany and Canada. These results clearly showed the important impact of WS on public health and the economy. These findings prompted us to start studies on the causal factors of weather-related health effects.


Subject(s)
Weather , Adolescent , Adult , Aged , Canada , Female , Germany , Health Status , Humans , Male , Meteorological Concepts , Middle Aged , Surveys and Questionnaires
5.
J Toxicol Environ Health A ; 67(20-22): 1667-77, 2004.
Article in English | MEDLINE | ID: mdl-15371208

ABSTRACT

This project addresses two important issues relevant to the health of Canadians: the risk of waterborne illness and the health impacts of global climate change. The Canadian health burden from waterborne illness is unknown, although it presumably accounts for a significant proportion of enteric illness. Recently, large outbreaks with severe consequences produced by E. coli O157:H7 and Cryptosporidium have alarmed Canadians and brought demands for political action. A concurrent need to understand the health impacts of global climate changes and to develop strategies to prevent or prepare for these has also been recognized. There is mounting evidence that weather is often a factor in triggering waterborne disease outbreaks. A recent study of precipitation and waterborne illness in the United States found that more than half the waterborne disease outbreaks in the United States during the last half century followed a period of extreme rainfall. Projections of international global climate change scenarios suggest that, under conditions of global warming most of Canada may expect longer summers, milder winters, increased summer drought, and more extreme precipitation. Excess precipitation, floods, high temperatures, and drought could affect the risk of waterborne illness in Canada. The existing scientific information regarding most weather-related adverse health impacts and on the impacts of global climate change on health in Canada is insufficient for informed decision making. The results of this project address this need through the investigation of the complex systemic interrelationships between disease incidence, weather parameters, and water quality and quantity, and by projecting the potential impact of global climate change on those relationships.


Subject(s)
Climate , Communicable Diseases/epidemiology , Disease Outbreaks , Water Microbiology , Animals , Canada/epidemiology , Communicable Disease Control , Communicable Diseases/etiology , Cryptosporidiosis/epidemiology , Cryptosporidiosis/etiology , Cryptosporidiosis/prevention & control , Cryptosporidium/pathogenicity , Escherichia coli Infections/epidemiology , Escherichia coli Infections/etiology , Escherichia coli Infections/prevention & control , Escherichia coli O157/pathogenicity , Fresh Water/microbiology , Fresh Water/parasitology , Greenhouse Effect , Humans , Water Purification/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...