Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-444467

ABSTRACT

Antiviral therapies are urgently needed to treat and limit the development of severe COVID-19 disease. Ivermectin, a broad-spectrum anti-parasitic agent, has been shown to have anti-SARS-CoV-2 activity in Vero cells at a concentration of 5 {micro}M. These in vitro results triggered the investigation of ivermectin as a treatment option to alleviate COVID-19 disease. In April 2021, the World Health Organization stated, however, the following: "the current evidence on the use of ivermectin to treat COVID-19 patients is inconclusive". It is speculated that the in vivo concentration of ivermectin is too low to exert a strong antiviral effect. Here, we performed a head-to head comparison of the antiviral activity of ivermectin and a structurally related, but metabolically more stable, moxidectin in multiple in vitro models of SARS-CoV-2 infection, including physiologically relevant human respiratory epithelial cells. Both moxidectin and ivermectin exhibited antiviral activity in Vero E6 cells. Subsequent experiments revealed that the compounds predominantly act on a step after virus cell entry. Surprisingly, however, in human airway-derived cell models, moxidectin and ivermectin failed to inhibit SARS-CoV-2 infection, even at a concentration of 10 {micro}M. These disappointing results calls for a word of caution in the interpretation of anti-SARS-CoV-2 activity of drugs solely based on Vero cells. Altogether, these findings suggest that, even by using a high-dose regimen of ivermectin or switching to another drug in the same class are unlikely to be useful for treatment against SARS-CoV-2 in humans.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20207118

ABSTRACT

SARS-CoV-2 is responsible for the coronavirus disease 2019 (COVID-19) and the current health crisis. Despite intensive research efforts, the genes and pathways that contribute to COVID-19 remain poorly understood. We therefore used an integrative genomics (IG) approach to identify candidate genes responsible for COVID-19 and its severity. We used Bayesian colocalization (COLOC) and summary-based Mendelian randomization to combine gene expression quantitative trait loci (eQTLs) from the Lung eQTL (n=1,038) and eQTLGen (n=31,784) studies with published COVID-19 genome-wide association study (GWAS) data from the COVID-19 Host Genetics Initiative. Additionally, we used COLOC to integrate plasma protein quantitative trait loci (pQTL) from the INTERVAL study (n=3,301) with COVID-19-associated loci. Finally, we determined any causal associations between plasma proteins and COVID-19 using multi-variable two-sample Mendelian randomization (MR). We found that the expression of 20 genes in lung and 31 genes in blood was associated with COVID-19. Of these genes, only three (LZTFL1, SLC6A20 and ABO) had been previously linked with COVID-19 in GWAS. The novel loci included genes involved in interferon pathways (IL10RB, IFNAR2 and OAS1). Plasma ABO protein, which is associated with blood type in humans, demonstrated a significant causal relationship with COVID-19 in MR analysis; increased plasma levels were associated with an increased risk of having COVID-19 and risk of severe COVID-19. In summary, our study identified genes associated with COVID-19 that may be prioritized for future investigation. Importantly, this is the first study to demonstrate a causal association between plasma ABO protein and COVID-19.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20169946

ABSTRACT

BackgroundThe recent outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has led to a worldwide pandemic. A subset of COVID-19 patients progresses to severe disease, with high mortality and limited treatment options. Detailed knowledge of the expression regulation of genes required for viral entry into respiratory epithelial cells is urgently needed. MethodsHere we assess the expression patterns of genes required for SARS-CoV-2 entry into cells, and their regulation by genetic, epigenetic and environmental factors, throughout the respiratory tract using samples collected from the upper (nasal) and lower airways (bronchi). FindingsGenes encoding viral receptors and activating protease are increased in the nose compared to the bronchi in matched samples and associated with the proportion of secretory epithelial cells in cellular deconvolution analyses. Current or ex-smoking was found to increase expression of these genes only in lower airways, which was associated with a significant increase in the predicted proportion of goblet cells. Both acute and second hand smoke exposure were found to increase ACE2 expression while inhaled corticosteroids decrease ACE2 expression in the lower airways. A strong association of DNA- methylation with ACE2 and TMPRSS2- mRNA expression was identified. InterpretationGenes associated with SARS-CoV-2 viral entry into cells are high in upper airways, but strongly increased in lower airways by smoke exposure. In contrast, ICS decreases ACE2 expression, indicating that inhaled corticosteroids are unlikely to increase the risk for more severe COVID-19 disease. FundingThis work was supported by a Seed Network grant from the Chan Zuckerberg Initiative to M.C.N. and by the European Unions H2020 Research and Innovation Program under grant agreement no. 874656 (discovAIR) to M.C.N. U BIOPRED was supported by an Innovative Medicines Initiative Joint Undertaking (No. 115010), resources from the European Unions Seventh Framework Programme (FP7/2007-2013) and EFPIA companies in kind contribution (www.imi.europa.eu). Longfonds Junior Fellowship. We acknowledge the contribution of the whole U-BIOPRED team as listed in the Appendix S1. SDB, FM and RFS would like to thank the Helmholtz Association, Germany, for support." NIH K08HL146943; Parker B. Francis Fellowship; ATS Foundation/Boehringer Ingelheim Pharmaceuticals Inc. Research Fellowship in IPF. RCR is part funded by Cancer Research UK Cambridge Centre and the Cambridge NIHR Biomedical Research Centre. BAP was funded by programme support from Cancer Research UK. The CRUKPAP Study was supported by the CRUK Cambridge Cancer Centre, by the NIHR Cambridge Biomedical Research Centre and by the Cambridge Bioresource. PIAMA was supported by The Netherlands Organization for Health Research and Development; The Netherlands Organization for Scientific Research; The Netherlands Lung Foundation (with methylation studies supported by AF 4.1.14.001); The Netherlands Ministry of Spatial Planning, Housing, and the Environment; and The Netherlands Ministry of Health, Welfare, and Sport. Dr. Qi is supported by a grant from the China Scholarship Council.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-182634

ABSTRACT

ABSTRACTBACKGROUND Cell entry of SARS-CoV-2, the novel coronavirus causing COVID-19, is facilitated by host cell angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). We aimed to identify and characterize genes that are co-expressed with ACE2 and TMPRSS2, and to further explore their biological functions and potential as druggable targets.METHODS Using the gene expression profiles of 1,038 lung tissue samples, we performed a weighted gene correlation network analysis (WGCNA) to identify modules of co-expressed genes. We explored the biology of co-expressed genes using bioinformatics databases, and identified known drug-gene interactions.RESULTS ACE2 was in a module of 681 co-expressed genes; 12 genes with moderate-high correlation with ACE2 (r>0.3, FDR<0.05) had known interactions with existing drug compounds. TMPRSS2 was in a module of 1,086 co-expressed genes; 15 of these genes were enriched in the gene ontology biologic process ‘Entry into host cell’, and 53 TMPRSS2-correlated genes had known interactions with drug compounds.CONCLUSION Dozens of genes are co-expressed with ACE2 and TMPRSS2, many of which have plausible links to COVID-19 pathophysiology. Many of the co-expressed genes are potentially targetable with existing drugs, which may help to fast-track the development of COVID-19 therapeutics.Competing Interest StatementS.M. reports personal fees from Novartis and Boehringer-Ingelheim, outside the submitted work. W.T. reports fees to Institution from Roche-Ventana, AbbVie, Merck-Sharp-Dohme and Bristol-Myers-Squibb, outside the submitted work. M.B. reports research grants paid to University from Astra Zeneca, Novartis, outside the submitted work. D.D.S. reports research funding from AstraZeneca and received honoraria for speaking engagements from Boehringer Ingelheim and AstraZeneca over the past 36 months, outside of the submitted work.View Full Text

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20059121

ABSTRACT

ObjectivesTo use human genetic variants that proxy angiotensin-converting enzyme (ACE) inhibitor drug effects and cardiovascular risk factors to provide insight into how these exposures affect lung ACE2 and TMPRSS2 gene expression and circulating ACE2 levels. DesignTwo-sample Mendelian randomization (MR) analysis. SettingSummary-level genetic association data. ParticipantsParticipants were predominantly of European ancestry. Variants that proxy ACE inhibitor drug effects and cardiometabolic risk factors (body mass index, chronic obstructive pulmonary disease, lifetime smoking index, low-density lipoprotein cholesterol, systolic blood pressure and type 2 diabetes mellitus) were selected from publicly available genome-wide association study data (sample sizes ranging from 188,577 to 898,130 participants). Genetic association estimates for lung expression of ACE2 and TMPRSS2 were obtained from the Gene-Tissue Expression (GTEx) project (515 participants) and the Lung eQTL Consortium (1,038 participants). Genetic association estimates for circulating plasma ACE2 levels were obtained from the INTERVAL study (4,947 participants). Main outcomes and measuresLung ACE2 and TMPRSS2 expression and plasma ACE2 levels. ResultsThere were no association of genetically proxied ACE inhibition with any of the outcomes considered here. There was evidence of a positive association of genetic liability to type 2 diabetes mellitus with lung ACE2 gene expression in GTEx (p = 4x10-4) and with circulating plasma ACE2 levels in INTERVAL (p = 0.03), but not with lung ACE2 expression in the Lung eQTL Consortium study (p = 0.68). There were no associations between genetically predicted levels of the other cardiometabolic traits with the outcomes. ConclusionsThis study does not provide evidence to support that ACE inhibitor antihypertensive drugs affect lung ACE2 and TMPRSS2 expression or plasma ACE2 levels. In the current COVID-19 pandemic, our findings do not support a change in ACE inhibitor medication use without clinical justification. Summary boxesO_ST_ABSWhat is already known on this topicC_ST_ABSO_LISevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current coronavirus disease 2019 (COVID-19) pandemic. C_LIO_LISerine protease TMPRSS2 is involved in priming the SARS-CoV-2 spike protein for cellular entry through the angiotensin-converting enzyme 2 (ACE2) receptor. C_LIO_LIExpression of ACE2 and TMPRSS2 in the lung epithelium might have implications for risk of SARS-CoV-2 infection and severity of COVID-19. C_LI What this study addsO_LIWe used human genetic variants that proxy ACE inhibitor drug effects and cardiometabolic risk factors to provide insight into how these exposures affect lung ACE2 and TMPRSS2 expression and circulating ACE2 levels. C_LIO_LIOur findings do not support the hypothesis that ACE inhibitors have effects on ACE2 expression. C_LIO_LIWe found some support for an association of genetic liability to type 2 diabetes mellitus with higher lung ACE2 expression and plasma ACE2 levels, but evidence was inconsistent across studies. C_LI

SELECTION OF CITATIONS
SEARCH DETAIL
...