Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 356(6343): 1164-1168, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28495879

ABSTRACT

Dual-comb spectroscopy offers the potential for high accuracy combined with fast data acquisition. Applications are often limited, however, by the complexity of optical comb systems. Here we present dual-comb spectroscopy of water vapor using a substantially simplified single-laser system. Very good spectroscopy measurements with fast sampling rates are achieved with a free-running dual-comb mode-locked semiconductor disk laser. The absolute stability of the optical comb modes is characterized both for free-running operation and with simple microwave stabilization. This approach drastically reduces the complexity for dual-comb spectroscopy. Band-gap engineering to tune the center wavelength from the ultraviolet to the mid-infrared could optimize frequency combs for specific gas targets, further enabling dual-comb spectroscopy for a wider range of industrial applications.

2.
Rev Sci Instrum ; 86(10): 103702, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26520961

ABSTRACT

With lithographic patterning dimensions decreasing well below 50 nm, it is of high importance to understand metrology at such small scales. This paper presents results obtained from dense arrays of contact holes (CHs) with various Critical Dimension (CD) between 15 and 50 nm, as patterned in a chemically amplified resist using an ASML EUV scanner and measured at ASML and TNO. To determine the differences between various (local) CD metrology techniques, we conducted an experiment using optical scatterometry, CD-Scanning Electron Microscopy (CD-SEM), Helium ion Microscopy (HIM), and Atomic Force Microscopy (AFM). CD-SEM requires advanced beam scan strategies to mitigate sample charging; the other tools did not need that. We discuss the observed main similarities and differences between the various techniques. To this end, we assessed the spatial frequency content in the raw images for SEM, HIM, and AFM. HIM and AFM resolve the highest spatial frequencies, which are attributed to the more localized probe-sample interaction for these techniques. Furthermore, the SEM, HIM, and AFM waveforms are analyzed in detail. All techniques show good mutual correlation, albeit the reported CD values systematically differ significantly. HIM systematically reports a 25% higher CD uniformity number than CD-SEM for the same arrays of CHs, probably because HIM has a higher resolution than the CD-SEM used in this assessment. A significant speed boost for HIM and AFM is required before these techniques are to serve the demanding industrial metrology applications like optical critical dimension and CD-SEM do nowadays.

3.
Ultramicroscopy ; 110(11): 1411-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20728276

ABSTRACT

The low-voltage foil corrector is a novel type of foil aberration corrector that can correct for both the spherical and chromatic aberration simultaneously. In order to give a realistic example of the capabilities of this corrector, a design for a low-voltage scanning electron microscope with the low-voltage foil corrector is presented. A fully electrostatic column has been designed and characterised by using aberration integrals and ray tracing calculations. The amount of aberration correction can be adjusted relatively easy. The third order spherical and the first order chromatic aberration can be completely cancelled. In the zero current limit, a FW50 probe size of 1.0 nm at 1 kV can be obtained. This probe size is mainly limited by diffraction and by the fifth order spherical aberration.

4.
Opt Express ; 18(26): 27582-8, 2010 Dec 20.
Article in English | MEDLINE | ID: mdl-21197032

ABSTRACT

High-power ultrafast lasers are important for numerous industrial and scientific applications. Current multi-watt systems, however, are based on relatively complex laser concepts, for example using additional intracavity elements for pulse formation. Moving towards a higher level of integration would reduce complexity, packaging, and manufacturing cost, which are important requirements for mass production. Semiconductor lasers are well established for such applications, and optically-pumped vertical external cavity surface emitting lasers (VECSELs) are most promising for higher power applications, generating the highest power in fundamental transverse mode (>20 W) to date. Ultrashort pulses have been demonstrated using passive modelocking with a semiconductor saturable absorber mirror (SESAM), achieving for example 2.1-W average power, sub-100-fs pulse duration, and 50-GHz pulse repetition rate. Previously the integration of both the gain and absorber elements into a single wafer was demonstrated with the MIXSEL (modelocked integrated external-cavity surface emitting laser) but with limited average output power (<200 mW). We have demonstrated the power scaling concept of the MIXSEL using optimized quantum dot saturable absorbers in an antiresonant structure design combined with an improved thermal management by wafer removal and mounting of the 8-µm thick MIXSEL structure directly onto a CVD-diamond heat spreader. The simple straight cavity with only two components has generated 28-ps pulses at 2.5-GHz repetition rate and an average output power of 6.4 W, which is higher than for any other modelocked semiconductor laser.


Subject(s)
Lasers, Semiconductor , Quantum Dots , Equipment Design , Equipment Failure Analysis , Systems Integration
5.
Opt Lett ; 33(22): 2719-21, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-19015720

ABSTRACT

We have demonstrated an optically pumped vertical-external-cavity surface-emitting laser (OP-VECSEL) generating more than 20 W of cw output power in a fundamental transverse mode (M2 approximately 1.1) at 960 nm. The laser is highly efficient with a slope efficiency of 49%, a pump threshold of 4.4 W, and an overall optical-to-optical efficiency of 43%.

6.
Opt Express ; 16(9): 6397-407, 2008 Apr 28.
Article in English | MEDLINE | ID: mdl-18545343

ABSTRACT

We report on a passively mode-locked Yb:YAG thin disk laser oscillator that generates 11.3-microJ pulses without the use of any additional external amplification. A repetition rate of 4 MHz is obtained using a 23.4-m-long multiple-pass cavity that extends the resonator length to a total of 37 m. The nearly transform-limited pulses at 45 W of average output power have a duration of 791 fs with a 1.56-nm-broad spectrum centered at 1030 nm. The laser is operated in a helium atmosphere to eliminate the air nonlinearity inside the resonator that previously limited the pulse energy.


Subject(s)
Lasers , Optics and Photonics , Refractometry , Semiconductors , Spectrum Analysis , Thermodynamics , Time Factors
7.
Opt Express ; 16(10): 7571-9, 2008 May 12.
Article in English | MEDLINE | ID: mdl-18545462

ABSTRACT

Semiconductor saturable absorber mirrors (SESAMs) have become a key element of many ultrafast laser sources, enabling passively modelocked lasers with >100 GHz repetition rate or with >10 microJ pulse energy. Precise knowledge of the nonlinear optical reflectivity is required to optimize the SESAMs for self-starting passive modelocking at record high repetition rates or pulse energies. In this article, we discuss a new method for wide dynamic range nonlinear reflectivity measurements. We achieve a higher accuracy (<0.05%) with a simpler and more cost-efficient measurement scheme compared with previous measurement systems. The method can easily be implemented for arbitrary wavelength regions and fluence ranges.

8.
Opt Express ; 16(23): 18646-56, 2008 Nov 10.
Article in English | MEDLINE | ID: mdl-19581950

ABSTRACT

Semiconductor saturable absorber mirrors (SESAMs) using quantum dot (QD) absorbers exhibit a larger design freedom than standard quantum well absorbers. The additional parameter of the dot density in combination with the field enhancement allows for an independent control of saturation fluence and modulation depth. We present the first detailed study of the effect of QD growth parameters and post growth annealing on the macroscopic optical SESAM parameters, measuring both nonlinear reflectivity and recombination dynamics. We studied a set of self-assembled InAs QD-SESAMs optimized for an operation wavelength around 960 nm with varying dot density and growth temperature. We confirm that the modulation depth is controlled by the dot density. We present design guidelines for QD-SESAMs with low saturation fluence and fast recovery, which are for example important for modelocking of vertical external cavity surface emitting lasers (VECSELs).


Subject(s)
Computer-Aided Design , Crystallization/methods , Lenses , Nanotechnology/instrumentation , Quantum Dots , Equipment Design , Equipment Failure Analysis , Nanotechnology/methods , Quality Control , Reproducibility of Results , Semiconductors , Sensitivity and Specificity
9.
Opt Express ; 15(25): 16966-71, 2007 Dec 10.
Article in English | MEDLINE | ID: mdl-19550987

ABSTRACT

We demonstrate the first passively mode-locked thin disk laser based on Yb:Lu(2)O(3). The laser generates 370-fs pulses with 20.5 W of average power in a diffraction-limited beam (M(2) < 1.1). The nearly transform-limited pulses have a spectral bandwidth of 3.4 nm centered near 1034 nm. With slightly longer pulses (523 fs) we obtained 24 W of average power at a pump power of 56 W, resulting in an optical-to-optical efficiency of 43%, which is higher than for any previously mode-locked thin disk laser.

SELECTION OF CITATIONS
SEARCH DETAIL
...