Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Cancer Cell ; 42(3): 378-395.e10, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38242126

ABSTRACT

Brain metastasis (BrM) is a common malignancy, predominantly originating from lung, melanoma, and breast cancers. The vasculature is a key component of the BrM tumor microenvironment with critical roles in regulating metastatic seeding and progression. However, the heterogeneity of the major BrM vascular components, namely endothelial and mural cells, is still poorly understood. We perform single-cell and bulk RNA-sequencing of sorted vascular cell types and detect multiple subtypes enriched specifically in BrM compared to non-tumor brain, including previously unrecognized immune regulatory subtypes. We integrate the human data with mouse models, creating a platform to interrogate vascular targets for the treatment of BrM. We find that the CD276 immune checkpoint molecule is significantly upregulated in the BrM vasculature, and anti-CD276 blocking antibodies prolonged survival in preclinical trials. This study provides important insights into the complex interactions between the vasculature, immune cells, and cancer cells, with translational relevance for designing therapeutic interventions.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Melanoma , Mice , Animals , Humans , Female , Brain Neoplasms/pathology , Brain/metabolism , Breast Neoplasms/pathology , Transcription Factors/metabolism , Tumor Microenvironment , B7 Antigens
2.
Cell ; 186(21): 4546-4566.e27, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37769657

ABSTRACT

Neutrophils are abundant immune cells in the circulation and frequently infiltrate tumors in substantial numbers. However, their precise functions in different cancer types remain incompletely understood, including in the brain microenvironment. We therefore investigated neutrophils in tumor tissue of glioma and brain metastasis patients, with matched peripheral blood, and herein describe the first in-depth analysis of neutrophil phenotypes and functions in these tissues. Orthogonal profiling strategies in humans and mice revealed that brain tumor-associated neutrophils (TANs) differ significantly from blood neutrophils and have a prolonged lifespan and immune-suppressive and pro-angiogenic capacity. TANs exhibit a distinct inflammatory signature, driven by a combination of soluble inflammatory mediators including tumor necrosis factor alpha (TNF-ɑ) and Ceruloplasmin, which is more pronounced in TANs from brain metastasis versus glioma. Myeloid cells, including tumor-associated macrophages, emerge at the core of this network of pro-inflammatory mediators, supporting the concept of a critical myeloid niche regulating overall immune suppression in human brain tumors.

3.
Nat Cancer ; 4(6): 908-924, 2023 06.
Article in English | MEDLINE | ID: mdl-37217652

ABSTRACT

The immune-specialized environment of the healthy brain is tightly regulated to prevent excessive neuroinflammation. However, after cancer development, a tissue-specific conflict between brain-preserving immune suppression and tumor-directed immune activation may ensue. To interrogate potential roles of T cells in this process, we profiled these cells from individuals with primary or metastatic brain cancers via integrated analyses on the single-cell and bulk population levels. Our analysis revealed similarities and differences in T cell biology between individuals, with the most pronounced differences observed in a subgroup of individuals with brain metastasis, characterized by accumulation of CXCL13-expressing CD39+ potentially tumor-reactive T (pTRT) cells. In this subgroup, high pTRT cell abundance was comparable to that in primary lung cancer, whereas all other brain tumors had low levels, similar to primary breast cancer. These findings indicate that T cell-mediated tumor reactivity can occur in certain brain metastases and may inform stratification for treatment with immunotherapy.


Subject(s)
Brain Neoplasms , T-Lymphocytes , Humans , Multiomics , Brain Neoplasms/secondary , Brain , Immunotherapy
4.
Cell Rep Med ; 4(1): 100900, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36652909

ABSTRACT

Brain metastases (BrMs) are the most common form of brain tumors in adults and frequently originate from lung and breast primary cancers. BrMs are associated with high mortality, emphasizing the need for more effective therapies. Genetic profiling of primary tumors is increasingly used as part of the effort to guide targeted therapies against BrMs, and immune-based strategies for the treatment of metastatic cancer are gaining momentum. However, the tumor immune microenvironment (TIME) of BrM is extremely heterogeneous, and whether specific genetic profiles are associated with distinct immune states remains unknown. Here, we perform an extensive characterization of the immunogenomic landscape of human BrMs by combining whole-exome/whole-genome sequencing, RNA sequencing of immune cell populations, flow cytometry, immunofluorescence staining, and tissue imaging analyses. This revealed unique TIME phenotypes in genetically distinct lung- and breast-BrMs, thereby enabling the development of personalized immunotherapies tailored by the genetic makeup of the tumors.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Melanoma , Skin Neoplasms , Adult , Humans , Female , Brain Neoplasms/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Immunotherapy , Tumor Microenvironment/genetics
5.
Nat Protoc ; 16(10): 4692-4721, 2021 10.
Article in English | MEDLINE | ID: mdl-34462595

ABSTRACT

Human tissue samples represent an invaluable source of information for the analysis of disease-specific cellular alterations and their variation between different pathologies. In cancer research, advancing a comprehensive understanding of the unique characteristics of individual tumor types and their microenvironment is of considerable importance for clinical translation. However, investigating human brain tumor tissue is challenging due to the often-limited availability of surgical specimens. Here we describe a multimodule integrated pipeline for the processing of freshly resected human brain tumor tissue and matched blood that enables analysis of the tumor microenvironment, with a particular focus on the tumor immune microenvironment (TIME). The protocol maximizes the information yield from limited tissue and includes both the preservation of bulk tissue, which can be performed within 1 h following surgical resection, as well as tissue dissociation for an in-depth characterization of individual TIME cell populations, which typically takes several hours depending on tissue quantity and further downstream processing. We also describe integrated modules for immunofluorescent staining of sectioned tissue, bulk tissue genomic analysis and fluorescence- or magnetic-activated cell sorting of digested tissue for subsequent culture or transcriptomic analysis by RNA sequencing. Applying this pipeline, we have previously described the overall TIME landscape across different human brain malignancies, and were able to delineate disease-specific alterations of tissue-resident versus recruited macrophage populations. This protocol will enable researchers to use this pipeline to address further research questions regarding the tumor microenvironment.


Subject(s)
Brain Neoplasms , Gene Expression Profiling , Humans , Macrophages , Sequence Analysis, RNA , Tumor Microenvironment
6.
Nat Cancer ; 2(10): 1086-1101, 2021 10.
Article in English | MEDLINE | ID: mdl-35121879

ABSTRACT

Tumor microenvironment-targeted therapies are emerging as promising treatment options for different cancer types. Tumor-associated macrophages and microglia (TAMs) represent an abundant nonmalignant cell type in brain metastases and have been proposed to modulate metastatic colonization and outgrowth. Here we demonstrate that targeting TAMs at distinct stages of the metastatic cascade using an inhibitor of colony-stimulating factor 1 receptor (CSF1R), BLZ945, in murine breast-to-brain metastasis models leads to antitumor responses in prevention and intervention preclinical trials. However, in established brain metastases, compensatory CSF2Rb-STAT5-mediated pro-inflammatory TAM activation blunted the ultimate efficacy of CSF1R inhibition by inducing neuroinflammation gene signatures in association with wound repair responses that fostered tumor recurrence. Consequently, blockade of CSF1R combined with inhibition of STAT5 signaling via AC4-130 led to sustained tumor control, a normalization of microglial activation states and amelioration of neuronal damage.


Subject(s)
Brain Neoplasms , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Animals , Brain Neoplasms/secondary , Genes, fms , Macrophage Activation , Melanoma , Mice , Receptors, Colony-Stimulating Factor/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , STAT5 Transcription Factor/genetics , Skin Neoplasms , Tumor Microenvironment , Melanoma, Cutaneous Malignant
7.
Immunity ; 53(5): 985-1000.e11, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33128876

ABSTRACT

Central memory CD8+ T cells (Tcm) control systemic secondary infections and can protect from chronic infection and cancer as a result of their stem-cell-like capacity to expand, differentiate, and self-renew. Central memory is generally thought to emerge following pathogen clearance and to form based on the de-differentiation of cytolytic effector cells. Here, we uncovered rare effector-phase CD8+ T cells expressing high amounts of the transcription factor Tcf7 (Tcf1) that showed no evidence of prior cytolytic differentiation and that displayed key hallmarks of Tcm cells. These effector-phase Tcf7hi cells quantitatively yielded Tcm cells based on lineage tracing. Mechanistically, Tcf1 counteracted the differentiation of Tcf7hi cells and sustained the expression of conserved adult stem-cell genes that were critical for CD8+ T cell stemness. The discovery of stem-cell-like CD8+ T cells during the effector response to acute infection provides an opportunity to optimize Tcm cell formation by vaccination.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/immunology , Cytotoxicity, Immunologic , Hepatocyte Nuclear Factor 1-alpha/metabolism , Immunologic Memory , T Cell Transcription Factor 1/metabolism , Animals , CD8-Positive T-Lymphocytes/cytology , Cell Differentiation/genetics , Chromatin Assembly and Disassembly , Cytotoxicity, Immunologic/genetics , Fluorescent Antibody Technique , Gene Expression , Hepatocyte Nuclear Factor 1-alpha/chemistry , Hepatocyte Nuclear Factor 1-alpha/genetics , Humans , Immunization , Immunologic Memory/genetics , Immunophenotyping , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Molecular , Protein Conformation , Spleen/immunology , Spleen/metabolism , Structure-Activity Relationship , T Cell Transcription Factor 1/chemistry , T Cell Transcription Factor 1/genetics
8.
Cell ; 181(7): 1643-1660.e17, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32470396

ABSTRACT

Brain malignancies encompass a range of primary and metastatic cancers, including low-grade and high-grade gliomas and brain metastases (BrMs) originating from diverse extracranial tumors. Our understanding of the brain tumor microenvironment (TME) remains limited, and it is unknown whether it is sculpted differentially by primary versus metastatic disease. We therefore comprehensively analyzed the brain TME landscape via flow cytometry, RNA sequencing, protein arrays, culture assays, and spatial tissue characterization. This revealed disease-specific enrichment of immune cells with pronounced differences in proportional abundance of tissue-resident microglia, infiltrating monocyte-derived macrophages, neutrophils, and T cells. These integrated analyses also uncovered multifaceted immune cell activation within brain malignancies entailing converging transcriptional trajectories while maintaining disease- and cell-type-specific programs. Given the interest in developing TME-targeted therapies for brain malignancies, this comprehensive resource of the immune landscape offers insights into possible strategies to overcome tumor-supporting TME properties and instead harness the TME to fight cancer.


Subject(s)
Brain Neoplasms/immunology , Glioma/pathology , Tumor Microenvironment/immunology , Brain/immunology , Brain/metabolism , Brain Neoplasms/pathology , Female , Glioma/metabolism , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Macrophages/immunology , Male , Microglia/metabolism , Neutrophils/metabolism , T-Lymphocytes/metabolism
9.
Cancer Immunol Immunother ; 69(4): 513-522, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31953577

ABSTRACT

The efficacy of immunotherapies for malignant melanoma is severely hampered by local and systemic immunosuppression mediated by myeloid-derived suppressor cells (MDSC). Inhibitor of differentiation 1 (ID1) is a transcriptional regulator that was shown to be centrally involved in the induction of immunosuppressive properties in myeloid cells in mice, while it was overexpressed in CD11b+ cells in the blood of late-stage melanoma patients. Therefore, we comprehensively assessed ID1 expression in PBMC from stage III and IV melanoma patients, and studied ID1 regulation in models for human monocyte differentiation towards monocyte-derived dendritic cells. A highly significant elevation of ID1 was observed in CD33+CD11b+CD14+HLA-DRlow monocytic MDSC in the blood of melanoma patients compared to their HLA-DRhigh counterparts, while expression of ID1 correlated positively with established MDSC markers S100A8/9 and iNOS. Moreover, expression of ID1 in monocytes significantly decreased in PBMC samples taken after surgical removal of melanoma metastases, compared to those taken before surgery. Finally, maturation of monocyte-derived DC coincided with a significant downregulation of ID1. Together, these data indicate that increased ID1 expression is strongly associated with expression of phenotypic and immunosuppressive markers of monocytic MDSC, while downregulation is associated with a more immunogenic myeloid phenotype. As such, ID1 may be an additional phenotypic marker for monocytic MDSC. Investigation of ID1 as a pharmacodynamic biomarker or its use as a target for modulating MDSC is warranted.


Subject(s)
Biomarkers/metabolism , Inhibitor of Differentiation Protein 1/metabolism , Melanoma/metabolism , Monocytes/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Adult , Aged , Aged, 80 and over , Animals , Cell Line, Tumor , Cells, Cultured , Female , HLA-DR Antigens/metabolism , Humans , Male , Melanoma/blood , Melanoma/surgery , Mice , Middle Aged , Phenotype
10.
Front Immunol ; 10: 2766, 2019.
Article in English | MEDLINE | ID: mdl-31921104

ABSTRACT

Tumor-infiltrating lymphocytes (TIL) are considered enriched for T cells recognizing shared tumor antigens or mutation-derived neoepitopes. We performed exome sequencing and HLA-A*02:01 epitope prediction from tumor cell lines from two HLA-A2-positive melanoma patients whose TIL displayed strong tumor reactivity. The potential neoepitopes were screened for recognition using autologous TIL by immunological assays and presentation on tumor major histocompatibility complex class I (MHC-I) molecules by Poisson detection mass spectrometry (MS). TIL from the patients recognized 5/181 and 3/49 of the predicted neoepitopes, respectively. MS screening detected 3/181 neoepitopes on tumor MHC-I from the first patient but only one was also among those recognized by TIL. Consequently, TIL enriched for neoepitope specificity failed to recognize tumor cells, despite being activated by peptides. For the second patient, only after IFN-γ treatment of the tumor cells was one of 49 predicted neoepitopes detected by MS, and this coincided with recognition by TIL sorted for the same specificity. Importantly, specific T cells could be expanded from patient and donor peripheral blood mononuclear cells (PBMC) for all neoepitopes recognized by TIL and/or detected on tumor MHC-I. In summary, stimulating the appropriate inflammatory environment within tumors may promote neoepitope MHC presentation while expanding T cells in blood may circumvent lack of specific TIL. The discordance in detection between physical and functional methods revealed here can be rationalized and used to improve neoantigen-targeted T cell immunotherapy.


Subject(s)
Epitopes, T-Lymphocyte/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma-Specific Antigens/immunology , Melanoma/immunology , Adult , Aged , Alleles , Antigen Presentation , Cell Line, Tumor , Flow Cytometry , HLA-A2 Antigen/immunology , Histocompatibility Antigens/immunology , Humans , Inflammation/immunology , Male , Mass Spectrometry , Melanoma-Specific Antigens/genetics , Mutation , Peptide Library , Exome Sequencing
11.
Ann Neurol ; 82(6): 1004-1015, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29205472

ABSTRACT

OBJECTIVE: 3-Methylglutaconic aciduria, dystonia-deafness, hepatopathy, encephalopathy, Leigh-like syndrome (MEGDHEL) syndrome is caused by biallelic variants in SERAC1. METHODS: This multicenter study addressed the course of disease for each organ system. Metabolic, neuroradiological, and genetic findings are reported. RESULTS: Sixty-seven individuals (39 previously unreported) from 59 families were included (age range = 5 days-33.4 years, median age = 9 years). A total of 41 different SERAC1 variants were identified, including 20 that have not been reported before. With the exception of 2 families with a milder phenotype, all affected individuals showed a strikingly homogeneous phenotype and time course. Severe, reversible neonatal liver dysfunction and hypoglycemia were seen in >40% of all cases. Starting at a median age of 6 months, muscular hypotonia (91%) was seen, followed by progressive spasticity (82%, median onset = 15 months) and dystonia (82%, 18 months). The majority of affected individuals never learned to walk (68%). Seventy-nine percent suffered hearing loss, 58% never learned to speak, and nearly all had significant intellectual disability (88%). Magnetic resonance imaging features were accordingly homogenous, with bilateral basal ganglia involvement (98%); the characteristic "putaminal eye" was seen in 53%. The urinary marker 3-methylglutaconic aciduria was present in virtually all patients (98%). Supportive treatment focused on spasticity and drooling, and was effective in the individuals treated; hearing aids or cochlear implants did not improve communication skills. INTERPRETATION: MEGDHEL syndrome is a progressive deafness-dystonia syndrome with frequent and reversible neonatal liver involvement and a strikingly homogenous course of disease. Ann Neurol 2017;82:1004-1015.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Deaf-Blind Disorders/diagnostic imaging , Deaf-Blind Disorders/genetics , Disease Progression , Dystonia/diagnostic imaging , Dystonia/genetics , Intellectual Disability/diagnostic imaging , Intellectual Disability/genetics , Mutation/genetics , Optic Atrophy/diagnostic imaging , Optic Atrophy/genetics , Adolescent , Adult , Amino Acid Sequence , Child , Child, Preschool , Cohort Studies , Deaf-Blind Disorders/therapy , Dystonia/therapy , Female , Humans , Infant , Infant, Newborn , Intellectual Disability/therapy , Male , Optic Atrophy/therapy , Young Adult
12.
Cancer Immunol Immunother ; 66(10): 1333-1344, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28601925

ABSTRACT

Dendritic cell (DC) vaccines have been demonstrated to elicit immunological responses in numerous cancer immunotherapy trials. However, long-lasting clinical effects are infrequent. We therefore sought to establish a protocol to generate DC with greater immunostimulatory capacity. Immature DC were generated from healthy donor monocytes by culturing in the presence of IL-4 and GM-CSF and were further differentiated into mature DC by the addition of cocktails containing different cytokines and toll-like receptor (TLR) agonists. Overall, addition of IFNγ and the TLR7/8 agonist R848 during maturation was essential for the production of high levels of IL-12p70 which was further augmented by adding the TLR3 agonist poly I:C. In addition, the DC matured with IFNγ, R848, and poly I:C also induced upregulation of several other pro-inflammatory and Th1-skewing cytokines/chemokines, co-stimulatory receptors, and the chemokine receptor CCR7. For most cytokines and chemokines the production was even further potentiated by addition of the TLR4 agonist LPS. Concurrently, upregulation of the anti-inflammatory cytokine IL-10 was modest. Most importantly, DC matured with IFNγ, R848, and poly I:C had the ability to activate IFNγ production in allogeneic T cells and this was further enhanced by adding LPS to the cocktail. Furthermore, epitope-specific stimulation of TCR-transduced T cells by peptide- or whole tumor lysate-loaded DC was efficiently stimulated only by DC matured in the full maturation cocktail containing IFNγ and the three TLR ligands R848, poly I:C, and LPS. We suggest that this cocktail is used for future clinical trials of anti-cancer DC vaccines.


Subject(s)
Dendritic Cells/immunology , Interferon-gamma/pharmacology , T-Lymphocytes/immunology , Toll-Like Receptors/agonists , Cell Differentiation , Humans
13.
JIMD Rep ; 27: 27-32, 2016.
Article in English | MEDLINE | ID: mdl-26409464

ABSTRACT

SUCLA2 encodes for a subunit of succinyl-coenzyme A synthase, the enzyme that reversibly synthesises succinyl-coenzyme A and ATP from succinate, coenzyme A and ADP in the Krebs cycle. Disruption of SUCLA2 function can lead to mitochondrial DNA depletion. Patients with a SUCLA2 mutation present with a rare but distinctive deafness-dystonia syndrome. Additionally, they exhibit elevated levels of the characteristic biochemical markers: methylmalonate, C4-dicarboxylic carnitine and lactate are increased in both plasma and urine. Thus far, eight different disease-causing SUCLA2 mutations, of which six missense mutations and two splice site mutations, have been described in the literature. Here, we present the first patient with an intragenic deletion in SUCLA2 and review the patients described in literature.

SELECTION OF CITATIONS
SEARCH DETAIL
...