Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38931563

ABSTRACT

The investigation of gait and its neuronal correlates under more ecologically valid conditions as well as real-time feedback visualization is becoming increasingly important in neuro-motor rehabilitation research. The Gait Real-time Analysis Interactive Lab (GRAIL) offers advanced opportunities for gait and gait-related research by creating more naturalistic yet controlled environments through immersive virtual reality. Investigating the neuronal aspects of gait requires parallel recording of brain activity, such as through mobile electroencephalography (EEG) and/or mobile functional near-infrared spectroscopy (fNIRS), which must be synchronized with the kinetic and /or kinematic data recorded while walking. This proof-of-concept study outlines the required setup by use of the lab streaming layer (LSL) ecosystem for real-time, simultaneous data collection of two independently operating multi-channel EEG and fNIRS measurement devices and gait kinetics. In this context, a customized approach using a photodiode to synchronize the systems is described. This study demonstrates the achievable temporal accuracy of synchronous data acquisition of neurophysiological and kinematic and kinetic data collection in the GRAIL. By using event-related cerebral hemodynamic activity and visually evoked potentials during a start-to-go task and a checkerboard test, we were able to confirm that our measurement system can replicate known physiological phenomena with latencies in the millisecond range and relate neurophysiological and kinetic data to each other with sufficient accuracy.


Subject(s)
Electroencephalography , Gait Analysis , Gait , Spectroscopy, Near-Infrared , Humans , Biomechanical Phenomena/physiology , Electroencephalography/methods , Spectroscopy, Near-Infrared/methods , Gait/physiology , Male , Gait Analysis/methods , Adult , Female , Virtual Reality , Walking/physiology , Brain/physiology , Proof of Concept Study , Young Adult
2.
Med Eng Phys ; 119: 104026, 2023 09.
Article in English | MEDLINE | ID: mdl-37634904

ABSTRACT

Anterior pelvic ring fractures are common in geriatric patients. The Supraacetabular External Fixator (SEF) is a relatively simple and effective surgical procedure. On the other hand, there is the option of a Subcutaneous Iliopubic Plate (SIP) osteosynthesis. Only limited comparative biomechanical data of these two devices are available. Therefore, this biomechanical study's objective was to compare the stabilizing effect of the SEF versus the SIP in a model of Fragility Fractures of the Pelvis (FFP) type Ia. A test stand for pelvic biomechanics testing that emulates the gait loading cycle with physiological relevance was used. The osteotomy on the right pelvic ring was stabilized either with the SEF or the SIP. Strain gauges were used to measure strain in the pelvic ring. The osteotomy's spatial interfragmentary displacement (SID) was monitored using a 3D digital image correlation system. The SEF stabilization reduced the SID by approximately 10%, whereas the locking SIP could reduce displacement by about 62%. Additionally, the SIP reduced the stress/strain levels by 67% in the posterior pelvic ring. We could demonstrate that the SIP is superior to SEF in treating FFP type Ia as it significantly reduced the osteotomy's SID and the strain in the posterior pelvic ring.


Subject(s)
Fractures, Bone , Plastic Surgery Procedures , Humans , Aged , Pelvis/surgery , Fractures, Bone/surgery , Image Processing, Computer-Assisted , Fracture Fixation, Internal
3.
J Biomech Eng ; 145(10)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37219841

ABSTRACT

Biomechanical testbench emulating the physiological loading of the pelvis is crucial in developing reconstructive implants for fragility fractures of the pelvis. Additionally, it will help understand the influence of the common daily loading on the pelvic ring. However, most reported experimental studies were mainly comparative with simplified loading and boundary conditions. In Part I of our study, we described the concept of the computational experiment design to design and construct a biomechanical testbench emulating the gait movement of the pelvis. The 57 muscles and joints' contact forces were reduced to four force actuators and one support, producing a similar stress distribution. The experimental setup is explained in this paper and some experimental results are presented. In addition, a series of repeatability and reproducibility tests were conducted to assess the test stand capabilities of replicating the gait physiological loading. The calculated stresses and the experimentally recorded strains showed that the pelvic ring response to the loading always follows the loaded leg side during the gait cycle. Furthermore, the experimental results of the pelvis displacement and strain at selected locations match the numerical ones. The developed test stand and the concept of computational experiment design behind it provide guidelines on how to design biomechanical testing equipment with physiological relevance.


Subject(s)
Gait , Pelvis , Reproducibility of Results , Biomechanical Phenomena , Pelvis/physiology , Gait/physiology , Mechanical Phenomena
4.
J Biomech Eng ; 145(10)2023 10 01.
Article in English | MEDLINE | ID: mdl-37199569

ABSTRACT

Biomechanics of the human pelvis and the associated implants are still a medical and engineering debated topic. Today, no biomechanical testing setup is dedicated to pelvis testing and associated reconstructive implants with accepted clinical relevance. This paper uses the computational experiment design procedure to numerically design a biomechanical test stand that emulates the pelvis physiological gait loading. The numerically designed test stand reduces the 57 muscles and joints' contact forces iteratively to only four force actuators. Two hip joints' contact forces and two equivalent muscle forces with a maximum magnitude of 2.3 kN are applied in a bilateral reciprocating action. The stress distribution of the numerical model of the developed test stand is very similar to that of the numerical model of the pelvis with all 57 muscles and joint forces. For instance, at the right arcuate line, the state of stress is identical. However, at the location of superior rami, there is a deviation ranging from 2% to 20% between the two models. The boundary conditions and the nature of loading adopted in this study are more realistic regarding the clinical relevance than state-of-the-art. The numerically developed biomechanical testing setup of the pelvis in this numerical study (Part I) was found to be valid for the experimental testing of the pelvis. The construct of the testing setup and the experimental testing of an intact pelvis under gait loading are discussed in detail in Part II: Experimental Testing.


Subject(s)
Hip Joint , Pelvis , Humans , Pelvis/physiology , Hip Joint/physiology , Gait/physiology , Muscles , Mechanical Phenomena , Biomechanical Phenomena
5.
Trauma Case Rep ; 42: 100740, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36465140

ABSTRACT

Introduction: Anterior pelvic ring fractures are common in geriatric patients. Current treatment algorithms recommend osteosynthesis if no pain free mobilisation is possible. For this a multitude of surgical techniques have been described. Among these the Supraacetabular External Fixator (SEF) is regarded a simple and effective surgical procedure. However, this technique is associated with significant drawbacks.Alternatively, there is the option of an internal fixator or a formal plate osteosynthesis. It is the objective of this case report to present the Subcutaneous Iliopubic Plate (SIP) in a fragility fracture of the anterior and posterior pelvic ring. Case report: An 83-year-old female patient sustained a fracture of the anterior pelvic ring, the lateral sacrum and the medial femoral neck. After initially refusing any surgery, the patient agreed to have the endoprosthesis implanted first, and then secondarily to dorsoventral osteosynthesis of the pelvis. Dorsally a transiliosacral screw osteosynthesis was performed. Anteriorly a bilateral subcutaneous iliopubic plate-osteosynthesis was chosen, a plate position that is anterior to the aponeurosis. Conclusions: The subcutaneous plate has proven to be a quick and uncomplicated surgical procedure that is significantly better tolerated by patients than external stabilization.

6.
Data Brief ; 38: 107386, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34604479

ABSTRACT

This data article presents the raw data used in the article "Experimental and analytical evaluation of exhaust air heat pumps in ventilation-based heating systems" [1]. The data set contains measurement results of a field monitoring on a residential exhaust air heat pump system (air-to-air heat pump) in Germany. This data could be used to investigate the dynamic behavior and performance of the exhaust air heat pump systems. The data set contains air temperature and humidity of all four sides of the heat pump unit. Moreover, the electrical consumption of the unit and the dynamic pressure difference on the exhaust side (as indication of the air volume rate) could be also found in the data set.

7.
Int J Numer Method Biomed Eng ; 36(4): e3319, 2020 04.
Article in English | MEDLINE | ID: mdl-32017442

ABSTRACT

This study focuses on the influence of the softening and stiffening of pubic symphysis on the load distribution within the bones of the pelvic ring under the physiological loadings of the single leg stance. Muscle forces and joint reaction forces were first determined by inverse dynamics and applied to a linear finite element model of the pelvis. With normal pubic symphysis stiffness, high Von Mises stresses are located on the anterior surface to the sacrum around the sacroiliac joint and on the superior ramus, both on the side of the weight-bearing leg. Softening of the pubic symphysis redirects the load backward, decreases the stresses at the anterior pelvis, and increases them at the posterior pelvis. A stiffening of the pubic symphysis redirects the load forward, increases the load on the posterior pelvis, and decreases them at the anterior pelvis. This investigation highlights the significance of the pubic symphysis on the load distribution of the pelvis and in maintaining the integrity of the structures. Its role should not be neglected when analyzing the pelvis.


Subject(s)
Finite Element Analysis , Humans , Pelvis/physiology , Pubic Symphysis/physiology , Weight-Bearing/physiology
8.
J Exp Orthop ; 6(1): 43, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31701256

ABSTRACT

BACKGROUND: This study aimed to assess the mechanical static and fatigue strength provided by the FlexitSystem plate in medial opening wedge high tibial osteotomies (MOWHTO), and to compare it to six previously tested implants: the TomoFix small stature, the TomoFix standard, the ContourLock, the iBalance, the second generation PEEKPower and the size 2 Activmotion. Thus, this will provide surgeons with data that will help in the choice of the most appropriate implant for MOWHTO. METHODS: Six fourth-generation tibial bone composites underwent a MOWHTO and each was fixed using six FlexitSystem plates, according to standard techniques. The same testing procedure that has already been previously defined, used and published, was used to investigate the static and dynamic strength of the prepared bone-implant constructs. The test consisted of static loading and cyclical loading for fatigue testing. RESULTS: During static testing, the group constituted by the FlexitSystem showed a fracture load higher than the physiological loading of slow walking (3.7 kN > 2.4 kN). Although this fracture load was relatively small compared to the average values for the other Implants from our previous studies, except for the TomoFix small stature and the Contour Lock. During fatigue testing, FlexitSystem group showed the smallest stiffness and higher lifespan than the TomoFix and the PEEKPower groups. CONCLUSIONS: The FlexitSystem plate showed sufficient strength for static loading, and average fatigue strength compared to the previously tested implants. Full body dynamic loading of the tibia after MOWHTO with the investigated implants should be avoided for at least 3 weeks. Implants with a wider T-shaped proximal end, positioned onto the antero-medial side of the tibia head, or inserted in the osteotomy opening in a closed-wedge construction, provided higher mechanical strength than implants with small a T-shaped proximal end, centred onto the medial side of the tibia head.

9.
PLoS One ; 14(5): e0216660, 2019.
Article in English | MEDLINE | ID: mdl-31075145

ABSTRACT

The inclusion of an allograft wedge during medial opening wedge high tibial osteotomy has been shown to lead to satisfactory time-to-union in larger corrections (>10°). Such large corrections are associated with greater incidences of intraoperative hinge fracture and reduced construct stability. The purpose of this study was to investigate the biomechanical stability that an allograft wedge brings to an osteotomy. Ten medium-size fourth generation artificial sawbone tibiae underwent 12 mm biplanar medial opening wedge high tibial osteotomy with a standard Tomofix plate. Five tibiae had an allograft wedge inserted into the osteotomy gap prior to plate fixation (allograft group). The gap in the remaining tibiae was left unfilled (control group). Each group underwent static compression testing and cyclical fatigue testing until failure of the osteotomy. Peak force, valgus malrotation, number of cycles, displacement and stiffness around the tibial head were analysed. Intraoperative hinge fractures occurred in all specimens. Under static compression, the allograft group withstood higher peak forces (6.01 kN) compared with the control group (5.12 kN). Valgus malrotation was lower, and stiffness was higher, in the allograft group. During cyclical fatigue testing, results within the allograft group were more consistent than within the control group. This may indicate more predictable results in large osteotomies with an allograft. Tibial osteotomies with allograft wedges appear beneficial for larger corrections, and in cases of intraoperative hinge fracture, due to the added construct stability they provide, and the consistency of results compared with tibial osteotomies without a graft.


Subject(s)
Mechanical Phenomena , Osteotomy/instrumentation , Tibia/surgery , Biomechanical Phenomena , Compressive Strength , Materials Testing , Stress, Mechanical
10.
J Exp Orthop ; 6(1): 13, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30923931

ABSTRACT

BACKGROUND: The purpose of this study was to compare the stability of medial opening-wedge high tibial osteotomy (MOWHTO) with and without different graft materials. Good clinical and radiological outcomes have been demonstrated when either using or not using graft materials during MOWHTO. Variations in the biomechanical properties of different graft types, regarding the stability they provide a MOWHTO, have not been previously investigated. METHODS: A 10 mm biplanar MOWHTO was performed on 15 artificial sawbone tibiae, which were fixed using the Activmotion 2 plate. Five bones had OSferion60 wedges (synthetic group), five had allograft bone wedges (allograft group), and five had no wedges (control group) inserted into the osteotomy gap. Static compression was applied axially to each specimen until failure of the osteotomy. Ultimate load, horizontal and vertical displacements were measured and used to calculate construct stiffness and valgus malrotation of the tibial head. RESULTS: The synthetic group failed at 6.3 kN, followed by the allograft group (6 kN), and the control group (4.5 kN). The most valgus malrotation of the tibial head was observed in the allograft group (2.6°). The synthetic group showed the highest stiffness at the medial side of the tibial head (9.54 kN·mm- 1), but the lowest stiffness at the lateral side (1.59 kN·mm-1). The allograft group showed high stiffness on the medial side of the tibial head (7.54 kN·mm- 1) as well as the highest stiffness on the lateral side (2.18 kN·mm- 1). CONCLUSIONS: The use of graft materials in MOWHTO results in superior material properties compared to the use of no graft. The static strength of MOWHTO is highest when synthetic grafts are inserted into the osteotomy gap. Allograft wedges provide higher mechanical strength to a MOWHTO than when no graft used. In comparison to the synthetic grafts, allograft wedges result in the stiffness of the osteotomy being more similar at the medial and lateral cortices.

11.
J Exp Orthop ; 5(1): 33, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30178260

ABSTRACT

BACKGROUND: The objective of the study is to investigate the load transmission within the pelvic ring under physiological loading during gait and to correlate these results with clinical findings. In a second approach, we analysed how load distribution is altered by fractures of the anterior pelvic ring. METHODS: Muscle forces and joint reaction forces are calculated by inverse dynamics and implemented in a finite element pelvis model including the joints. RESULTS: With the intact configuration and according to the moment of the gait, left and right superior and inferior rami show the highest stresses of the model, corresponding to the typical location of an anterior pelvic ring fracture. A superior ramus fracture induces larger stresses to the lower ramus and a slight increase of stresses on the posterior structures. A total disruption of anterior rami redirects the loads to the back of the pelvis and introduces significantly higher stresses on the posterior structures. CONCLUSIONS: This investigation enhances the understanding of the biomechanics of the pelvis and highlights the important role of the rami in load carrying and in maintaining integrity of the pelvic ring.

12.
J Exp Orthop ; 5(1): 28, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-30091026

ABSTRACT

BACKGROUND: Many different fixation devices are used to maintain the correction angle after medial open wedge high tibial osteotomy (MOWHTO). Each device must provide at least sufficient mechanical stability to avoid loss of correction and unwanted fracture of the contralateral cortex until the bone heals. In the present study, the mechanical stability of following different implants was compared: the TomoFix small stature (sm), the TomoFix standard (std), the Contour Lock, the iBalance and the second generation PEEKPower. Simplified loading, usually consisting of a vertical load applied to the tibia plateau, is used for experimental testing of fixation devices and also in numerical studies. Therefore, this study additionally compared this simplified experimental loading with a more realistic loading that includes the muscle forces. METHOD: Two types of finite element models, according to the considered loading, were created. The first type numerically simulated the static tests of MOWHTO implants performed in a previous experimental biomechanical study, by applying a vertical compressive load perpendicularly to the plateau of the osteotomized tibia. The second type included muscle forces in finite element models of the lower limb with osteotomized tibiae and simulated the stance phase of normal gait. Section forces in the models were determined and compared. Stresses in the implants and contralateral cortex, and micromovements of the osteotomy wedge, were calculated. RESULTS: For both loading types, the stresses in the implants were lower than the threshold values defined by the material strength. The stresses in the lateral cortex were smaller than the ultimate tensile strength of the cortical bone. The implants iBalance and Contour Lock allowed the smallest micromovements of the wedge, while the PEEKPower allowed the highest. There was a correlation between the micromovements of the wedge, obtained for the simplified loading of the tibia, and the more realistic loading of the lower limb at 15% of the gait cycle (Pearson's value r = 0.982). CONCLUSIONS: An axial compressive load applied perpendicularly to the tibia plateau, with a magnitude equal to the first peak value of the knee joint contact forces, corresponds quite well to a realistic loading of the tibia during the stance phase of normal gait (at 15% of the gait cycle and a knee flexion of about 22 degrees). However, this magnitude of the knee joint contact forces overloads the tibia compared to more realistic calculations, where the muscle forces are considered. The iBalance and Contour Lock implants provide higher rigidity to the bone-implant constructs compared to the TomoFix and the PEEKPower plates.

13.
Article in German | MEDLINE | ID: mdl-29421823

ABSTRACT

BACKGROUND: Osteitis pubis is a common cause of chronic groin pain. Due to high clinical uncertainty and varying etiopathology, the diagnosis is often delayed. Especially athletes suffer from this disease, but patients with orthopaedic, traumatological, neurological, urological, gynaecological, and rheumatic complaints can also be affected. Osteitis pubis can be treated by conservative as well as surgical techniques. MATERIAL AND METHODS: Systematic literature research, descriptive presentation of the studies, and interpretation of evidence-based medicine results. RESULTS: The scientific level of studies about osteitis pubis and the number of athletes included are low overall. A statistical comparison is methodically difficult due to the heterogeneity of publications. The leading clinical symptom of osteitis pubis is an aching symphysis pubica. Unfortunately, there are no characteristic clinical pathognomonic signs. The medical diagnosis is based on an exclusion of various differential diagnoses (e. g. sports hernia, femoroacetabular impingement, adductor lesion) and a comparison of medical history, clinical examination, and imaging methods. After a period of rest, osteitis pubis is quite often a self-limiting disease and will initially be treated conservatively. If this fails, surgical intervention has to be considered depending on concurrent pathologies. CONCLUSION: Specific guidelines for the diagnosis and treatment of osteitis pubis do not exist as yet. But there is consensus that a surgical intervention should only be performed if conservative treatment fails. The level of evidence for the studies is low. A meta-analytical evaluation based on the existing publications is not possible as yet. The number of recorded athletes in relation to the socio-economic consequences of the disease, especially in professional sport, is low.

14.
Biomed Eng Online ; 16(1): 138, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29212516

ABSTRACT

BACKGROUND: Results of finite element (FE) analyses can give insight into musculoskeletal diseases if physiological boundary conditions, which include the muscle forces during specific activities of daily life, are considered in the FE modelling. So far, many simplifications of the boundary conditions are currently made. This study presents an approach for FE modelling of the lower limb for which muscle forces were included. METHODS: The stance phase of normal gait was simulated. Muscle forces were calculated using a musculoskeletal rigid body (RB) model of the human body, and were subsequently applied to a FE model of the lower limb. It was shown that the inertial forces are negligible during the stance phase of normal gait. The contact surfaces between the parts within the knee were modelled as bonded. Weak springs were attached to the distal tibia for numerical reasons. RESULTS: Hip joint reaction forces from the RB model and those from the FE model were similar in magnitude with relative differences less than 16%. The forces of the weak spring were negligible compared to the applied muscle forces. The maximal strain was 0.23% in the proximal region of the femoral diaphysis and 1.7% in the contact zone between the tibia and the fibula. CONCLUSIONS: The presented approach based on FE modelling by including muscle forces from inverse dynamic analysis of musculoskeletal RB model can be used to perform analyses of the lower limb with very realistic boundary conditions. In the present form, this model can be used to better understand the loading, stresses and strains of bones in the knee area and hence to analyse osteotomy fixation devices.


Subject(s)
Finite Element Analysis , Gait , Lower Extremity/physiology , Mechanical Phenomena , Muscle, Skeletal/physiology , Biomechanical Phenomena , Humans
15.
J Exp Orthop ; 4(1): 39, 2017 Dec 08.
Article in English | MEDLINE | ID: mdl-29222607

ABSTRACT

BACKGROUND: The purpose of the present study was to compare the mechanical static and fatigue strength of the size 2 osteotomy plate "Activmotion" with the following five other common implants for the treatment of medial knee joint osteoarthritis: the TomoFix small stature, the TomoFix standard, the Contour Lock, the iBalance and the second generation PEEKPower. METHODS: Six fourth-generation tibial bone composites underwent a medial open-wedge high tibial osteotomy (HTO), according to standard techniques, using size 2 Activmotion osteotomy plates. All bone-implant constructs were subjected to static compression load to failure and load-controlled cyclic fatigue failure testing, according to a previously defined testing protocol. The mechanical stability was investigated by considering different criteria and parameters: maximum forces, the maximum number of loading cycles, stiffness, the permanent plastic deformation of the specimens during the cyclic fatigue tests, and the maximum displacement range in the hysteresis loops of the cyclic loading responses. RESULTS: In each test, all bone-implant constructs with the size 2 Activmotion plate failed with a fracture of the lateral cortex, like with the other five previously tested implants. For the static compression tests the failure occurred in each tested implant above the physiological loading of slow walking (> 2400 N). The load at failure for the Activmotion group was the highest (8200 N). In terms of maximum load and number of cycles performed prior to failure, the size 2 Activmotion plate showed higher results than all the other tested implants except the ContourLock plate. The iBalance implant offered the highest stiffness (3.1 kN/mm) for static loading on the lateral side, while the size 2 Activmotion showed the highest stiffness (4.8 kN/mm) in cyclic loading. CONCLUSIONS: Overall, regarding all of the analysed strength parameters, the size 2 Activmotion plate provided equivalent or higher mechanical stability compared to the previously tested implant. Implants with a metaphyseal slope adapted to the tibia anatomy, and positioned more anteriorly on the proximal medial side of the tibia, should provide good mechanical stability.

16.
J Exp Orthop ; 4(1): 23, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28646430

ABSTRACT

BACKGROUND: This study aimed to investigate, by means of finite element analysis, the effect of a drill hole at the end of a horizontal osteotomy to reduce the risk of lateral cortex fracture while performing an opening wedge high tibial osteotomy (OWHTO). The question was whether drilling a hole relieves stress and increases the maximum correction angle without fracture of the lateral cortex depending on the ductility of the cortical bone. METHODS: Two different types of osteotomy cuts were considered; one with a drill hole (diameter 5 mm) and the other without the hole. The drill holes were located about 20 mm distally to the tibial plateau and 6 mm medially to the lateral cortex, such that the minimal thickness of the contralateral cortical bone was 5 mm. Based on finite element calculations, two approaches were used to compare the two types of osteotomy cuts considered: (1) Assessing the static strength using local stresses following the idea of the FKM-guideline, subsequently referred to as the "FKM approach" and (2) limiting the total strain during the opening of the osteotomy wedge, subsequently referred to as "strain approach". A critical opening angle leading to crack initiation in the opposite lateral cortex was determined for each approach and was defined as comparative parameter. The relation to bone aging was investigated by considering the material parameters of cortical bones from young and old subjects. RESULTS: The maximum equivalent (von-Mises) stress was smaller for the cases with a drill hole at the end of the osteotomy cut. The critical angle was approximately 1.5 times higher for the specimens with a drill hole compared to those without. This corresponds to an average increase of 50%. The calculated critical angle for all approaches is below 5°. The critical angle depends on the used approach, on patient's age and assumed ductility of the cortical bone. CONCLUSIONS: Drilling a hole at the end of the osteotomy reduces the stresses in the lateral cortex and increases the critical opening angle prior to cracking of the opposite cortex in specimen with small correction angles. But the difference from having a drill hole or not is not so significant, especially for older patients. The ductility of the cortical bone is the decisive parameter for the critical opening angle.

17.
Int Sch Res Notices ; 2015: 439095, 2015.
Article in English | MEDLINE | ID: mdl-27347518

ABSTRACT

The present paper deals with the design, the repeatability, and the comparison to literature data of a new measuring device called "Rotameter" to characterize the rotational knee laxity or the tibia-femoral rotation (TFR). The initial prototype P1 of the Rotameter is shortly introduced and then modified according to trials carried out on a prosthetic leg and on five healthy volunteers, leading therefore to an improved prototype P2. A comparison of results obtained from P1 and P2 with the same male subject shows the enhancements of P2. Intertester and intratester repeatability of this new device were shown and it was observed that rotational laxities of left and right knees are the same for a healthy subject. Moreover, a literature review showed that measurements with P2 presented lower TFR values than other noninvasive devices. The measured TFR versus torque characteristic was quite similar to other invasive devices, which are more difficult to use and harmful to the patient. Hence, our prototype P2 proved to be an easy-to-use and suitable device for quantifying rotational knee laxity. A forthcoming study will validate the Rotameter thanks to an approach based on computed tomography in order to evaluate its precision.

18.
Int Sch Res Notices ; 2015: 705201, 2015.
Article in English | MEDLINE | ID: mdl-27347541

ABSTRACT

The purpose of this study is to validate a noninvasive rotational knee laxity measuring device called "Rotameter P2" with an approach based on Computed Tomography (CT). This CT-approach using X-rays is hence invasive and can be regarded as a precise reference method that may also be applied to similar devices. An error due to imperfect femur fixation was observed but can be neglected for small torques. The most significant estimation error is due to the unavoidable soft tissues rotation and hence flexibility in the measurement chain. The error increases with the applied torque. The assessment showed that the rotational knee angle measured with the Rotameter is still overestimated because of thigh and femur displacement, soft tissues deformation, and measurement artefacts adding up to a maximum of 285% error at +15 Nm for the Internal Rotation of female volunteers. This may be questioned if such noninvasive devices for measuring the Tibia-Femoral Rotation (TFR) can help diagnosing knee pathologies and investigate ligament reconstructive surgery.

19.
J Exp Orthop ; 2(1): 14, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26914882

ABSTRACT

BACKGROUND: As several new tibial osteotomy plates recently appeared on the market, the aim of the present study was to compare mechanical static and fatigue strength of three newly designed plates with gold standard plates for the treatment of medial knee joint osteoarthritis. METHODS: Sixteen fourth-generation tibial bone composites underwent a medial open-wedge high tibial osteotomy (HTO) according to standard techniques, using five TomoFix standard plates, five PEEKPower plates and six iBalance implants. Static compression load to failure and load-controlled cyclic fatigue failure tests were performed. Forces, horizontal and vertical displacements were measured; rotational permanent plastic deformations, maximal displacement ranges in the hysteresis loops of the cyclic loading responses and dynamic stiffness were determined. RESULTS: Static compression load to failure tests revealed that all plates showed sufficient stability up to 2400 N without any signs of opposite cortex fracture, which occurred above this load in all constructs at different load levels. During the fatigue failure tests, screw breakage in the iBalance group and opposite cortex fractures in all constructs occurred only under physiological loading conditions (<2400 N). The highest fatigue strength in terms of maximal load and number of cycles performed prior to failure was observed for the ContourLock group followed by the iBalance implants, the TomoFix standard (std) and small stature (sm) plates. The PEEKPower group showed the lowest fatigue strength. CONCLUSIONS: All plates showed sufficient stability under static loading. Compared to the TomoFix and the PEEKPower plates, the ContourLock plate and iBalance implant showed a higher mechanical fatigue strength during cyclic fatigue testing. These data suggest that both mechanical static and fatigue strength increase with a wider proximal T-shaped plate design together with diverging proximal screws as used in the ContourLock plate or a closed-wedge construction as in the iBalance design. Mechanical strength of the bone-implant constructs decreases with a narrow T-shaped proximal end design and converging proximal screws (TomoFix) or a short vertical plate design (PEEKPower Plate). Whenever high mechanical strength is required, a ContourLock or iBalance plate should be selected.

20.
ISRN Orthop ; 2013: 387620, 2013.
Article in English | MEDLINE | ID: mdl-24959357

ABSTRACT

Background. The objective of the present study was to compare mechanical strength and stability of the newly designed spacer plate with the gold standard plate for the treatment of medial knee joint osteoarthritis. Materials and Methods. Ten fourth-generation tibial bone composites underwent a medial open-wedge high tibial osteotomy (HTO) according to standard techniques, using five TomoFix plates and five Contour Lock plates. Static compression load to failure and load-controlled cyclical fatigue failure tests were performed. Forces and horizontal displacements were measured; plastic deformations and dynamic stiffness were determined. Results and Discussion. In all samples, rotation of the tibial head and fracture of the opposite cortex were observed. Behaviors of the specimens under static loading were comparable between groups. Cyclic testing revealed lateral significant higher stiffness until failure for the Contour Lock compared to the TomoFix plate. No visible implant failure was observed in any group. Conclusion. Considering the static analysis, both plates offered sufficient stability under physiologic loads of up to 3000 N. The Contour Lock plate-fixated specimens showed a higher stability during the cyclic testing, supposedly due to the wider distance between the fixation screws.

SELECTION OF CITATIONS
SEARCH DETAIL
...