Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34248241

ABSTRACT

A highly-enriched 244Pu isotope dilution reference material has been prepared and characterized for metrologically traceable measurements of very small quantities of plutonium. The amount of plutonium in samples associated with nuclear safeguards and nuclear forensic measurements can be significantly less than 1 ng. Accordingly, the ability to quantify the amount and isotopic composition of plutonium from a single mass-spectrometric analysis is particularly desirable. The highly-enriched 244Pu reference material, described here, will minimize the magnitude of spike corrections necessary to obtain accurate information on plutonium isotopic composition from isotope dilution measurements.

2.
Anal Chem ; 91(18): 11643-11652, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31418542

ABSTRACT

An intercomparison of the radio-chronometric ages of four distinct plutonium-certified reference materials varying in chemical form, isotopic composition, and period of production are presented. The cross-comparison of the different 234U/238Pu, 235U/239Pu, 236U/240Pu, and 241Am/241Pu model purification ages obtained at four independent analytical facilities covering a range of laboratory environments from bulk sample processing to clean facilities dedicated to nuclear forensic investigation of environmental samples enables a true assessment of the state-of-practice in "age dating capabilities" for nuclear materials. The analytical techniques evaluated used modern mass spectrometer instrumentation including thermal ionization mass spectrometers and inductively coupled plasma mass spectrometers for isotopic abundance measurements. Both multicollector and single collector instruments were utilized to generate the data presented here. Consensus values established in this study make it possible to use these isotopic standards as quality control standards for radio-chronometry applications. Results highlight the need for plutonium isotopic standards that are certified for 234U/238Pu, 235U/239Pu, 236U/240Pu, and 241Am/241Pu model purification ages as well as other multigenerational radio-chronometers such as 237Np/241Pu. Due to the capabilities of modern analytical instrumentation, analytical laboratories that focus on trace level analyses can obtain model ages with marginally larger uncertainties than laboratories that handle bulk samples. When isotope ratio measurement techniques like thermal ionization mass spectrometry and inductively coupled plasma mass spectrometry with comparable precision are utilized, model purification ages with similar uncertainties are obtained.

3.
Nucl Med Biol ; 50: 25-32, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28432915

ABSTRACT

Scandium-44g (half-life 3.97h) shows promise for application in positron emission tomography (PET), due to favorable decay parameters. One of the sources of 44gSc is the 44Ti/44gSc generator, which can conveniently provide this radioisotope on a daily basis at a diagnostic facility. Titanium-44 (half-life 60.0 a), in turn, can be obtained via proton irradiation of scandium metal targets. A substantial 44Ti product batch, however, requires high beam currents, long irradiation times and an elaborate chemical procedure for 44Ti isolation and purification. This study describes the production of a combined 175MBq (4.7mCi) batch yield of 44Ti in week long proton irradiations at the Los Alamos Isotope Production Facility (LANL-IPF) and the Brookhaven Linac Isotope Producer (BNL-BLIP). A two-step ion exchange chromatography based chemical separation method is introduced: first, a coarse separation of 44Ti via anion exchange sorption in concentrated HCl results in a 44Tc/Sc separation factor of 102-103. A second, cation exchange based step in HCl media is then applied for 44Ti fine purification from residual Sc mass. In summary, this method yields a 90-97% 44Ti recovery with an overall Ti/Sc separation factor of ≥106.


Subject(s)
Protons , Radiochemistry/methods , Radioisotopes/chemistry , Radioisotopes/isolation & purification , Scandium/chemistry , Titanium/chemistry , Titanium/isolation & purification , Gamma Rays , Radiochemistry/instrumentation
4.
Nucl Med Biol ; 49: 24-29, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28288384

ABSTRACT

INTRODUCTION: Rhenium-186g (t1/2 = 3.72 d) is a ß- emitting isotope suitable for theranostic applications. Current production methods rely on reactor production by way of the reaction 185Re(n,γ)186gRe, which results in low specific activities limiting its use for cancer therapy. Production via charged particle activation of enriched 186W results in a 186gRe product with a higher specific activity, allowing it to be used more broadly for targeted radiotherapy applications. This targets the unmet clinical need for more efficient radiotherapeutics. METHODS: A target consisting of highly enriched, pressed 186WO3 was irradiated with protons at the Los Alamos National Laboratory Isotope Production Facility (LANL-IPF) to evaluate 186gRe product yield and quality. LANL-IPF was operated in a dedicated nominal 40 MeV mode. Alkaline dissolution followed by anion exchange chromatography was used to isolate 186gRe from the target material. Phantom and radiolabeling studies were conducted with the produced 186gRe activity. RESULTS: A 186gRe batch yield of 1.38 ± 0.09 MBq/µAh or 384.9 ± 27.3 MBq/C was obtained after 16.5 h in a 205 µA average/230µA maximum current proton beam. The chemical recovery yield was 93% and radiolabeling was achieved with efficiencies ranging from 60-80%. True specific activity of 186gRe at EOB was determined via ICP-AES and amounted to 0.788 ± 0.089 GBq/µg (0.146 ± 0.017 GBq/nmol), which is approximately seven times higher than the product obtained from neutron capture in a reactor. Phantom studies show similar imaging quality to the gold standard 99mTc. CONCLUSIONS: We report a preliminary study of the large-scale production and novel anion exchange based chemical recovery of high specific activity 186gRe from enriched 186WO3 targets in a high-intensity proton beam with exceptional chemical recovery and radiochemical purity.


Subject(s)
Neoplasms/radiotherapy , Oxides/chemistry , Proton Therapy/methods , Radiochemistry/methods , Rhenium/chemistry , Rhenium/therapeutic use , Tungsten/chemistry , Isotope Labeling , Neoplasms/diagnostic imaging , Phantoms, Imaging , Tomography, Emission-Computed, Single-Photon
5.
Angew Chem Int Ed Engl ; 55(41): 12755-9, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27629989

ABSTRACT

Advancing our understanding of the minor actinides (Am, Cm) versus lanthanides is key for developing advanced nuclear-fuel cycles. Herein, we describe the preparation of (NBu4 )Am[S2 P((t) Bu2 C12 H6 )]4 and two isomorphous lanthanide complexes, namely one with a similar ionic radius (i.e., Nd(III) ) and an isoelectronic one (Eu(III) ). The results include the first measurement of an Am-S bond length, with a mean value of 2.921(9) Å, by single-crystal X-ray diffraction. Comparison with the Eu(III) and Nd(III) complexes revealed subtle electronic differences between the complexes of Am(III) and the lanthanides.

6.
Nucl Med Biol ; 42(5): 428-438, 2015 May.
Article in English | MEDLINE | ID: mdl-25684650

ABSTRACT

INTRODUCTION: The use of α-emitting isotopes for radionuclide therapy is a promising treatment strategy for small micro-metastatic disease. The radioisotope (213)Bi is a nuclide that has found substantial use for targeted α-therapy (TAT). The relatively unexplored aqueous chemistry of Bi(3+), however, hinders the development of bifunctional chelating agents that can successfully deliver these Bi radioisotopes to the tumor cells. Here, a novel series of nitrogen-rich macrocyclic ligands is explored for their potential use as Bi-selective chelating agents. METHODS: The ligands, 1,4,7,10-tetrakis(pyridin-2-ylmethyl)-1,4,7,10-tetraazacyclododecane (L(py)), 1,4,7,10-tetrakis(3-pyridazylmethyl)-1,4,7,10-tetraazacyclododecane (L(pyd)), 1,4,7,10-tetrakis(4-pyrimidylmethyl)-1,4,7,10-tetraazacyclododecane (L(pyr)), and 1,4,7,10-tetrakis(2-pyrazinylmethyl)-1,4,7,10-tetraazacyclododecane (L(pz)), were prepared by a previously reported method and investigated here for their abilities to bind Bi radioisotopes. The commercially available and commonly used ligands 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and N-[(R)-2-amino-3-(p-isothiocyanato-phenyl)propyl]-trans-(S,S)- cyclohexane-1,2-diamine-N,N,N',N",N"-pentaacetic acid (CHX-A''-DTPA) were also explored for comparative purposes. Radio-thin-layer chromatography (TLC) was used to measure the binding kinetics and stabilities of the complexes formed. The long-lived isotope, (207)Bi (t(1/2)=32 years), was used for these studies. Density functional theory (DFT) calculations were also employed to probe the ligand interactions with Bi(3+) and the generator parent ion Ac(3+). RESULTS: In contrast to DOTA and CHX-A''-DTPA, these nitrogen-rich macrocycles selectively chelate Bi(3+) in the presence of the parent isotope Ac(3+). Among the four tested, L(py) was found to exhibit optimal Bi(3+)-binding kinetics and complex stability. L(py) complexes Bi(3+) more rapidly than DOTA, yet the resulting complexes are of similar stability. DFT calculations corroborate the experimentally observed selectivity of these ligands for Bi(3+) over Ac(3+). CONCLUSION: Taken together, these data implicate L(py) as a valuable chelating agent for the delivery of (213)Bi. Its selectivity for Bi(3+) and rapid and stable labeling properties warrant further investigation and biological studies.


Subject(s)
Bismuth/chemistry , Bismuth/therapeutic use , Chelating Agents/chemistry , Macrocyclic Compounds/chemistry , Nitrogen/chemistry , Radioisotopes , Actinium/chemistry , Alpha Particles/therapeutic use , Binding, Competitive , Edetic Acid/chemistry , Isotope Labeling , Kinetics , Ligands , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...