Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(4): 2907-2940, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38348661

ABSTRACT

The matrix metalloprotease ADAMTS7 has been identified by multiple genome-wide association studies as being involved in the development of coronary artery disease. Subsequent research revealed the proteolytic function of the enzyme to be relevant for atherogenesis and restenosis after vessel injury. Based on a publicly known dual ADAMTS4/ADAMTS5 inhibitor, we have in silico designed an ADAMTS7 inhibitor of the catalytic domain, which served as a starting point for an optimization campaign. Initially our inhibitors suffered from low selectivity vs MMP12. An X-ray cocrystal structure inspired us to exploit amino acid differences in the binding site of MMP12 and ADAMTS7 to improve selectivity. Further optimization composed of employing 5-membered heteroaromatic groups as hydantoin substituents to become more potent on ADAMTS7. Finally, fine-tuning of DMPK properties yielded BAY-9835, the first orally bioavailable ADAMTS7 inhibitor. Further optimization to improve selectivity vs ADAMTS12 seems possible, and a respective starting point could be identified.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Humans , ADAMTS7 Protein/genetics , ADAMTS7 Protein/metabolism , Genome-Wide Association Study , Matrix Metalloproteinase 12
2.
J Med Chem ; 66(7): 4659-4670, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36932954

ABSTRACT

After acute myocardial infarction, early reperfusion is the most effective strategy for reducing cardiac damage and improving clinical outcome. However, restoring blood flow to the ischemic myocardium can paradoxically induce injury by itself (reperfusion injury), with microvascular dysfunction being one contributing factor. α2B adrenergic receptors have been hypothesized to be involved in this process. To assess α2B-related pharmacology, we identified a novel α2B antagonist by HTS. The HTS hit showed limited α2A selectivity as well as low solubility and was optimized toward BAY-6096, a potent, selective, and highly water-soluble α2B antagonist. Key aspects of the optimization were the introduction of a permanently charged pyridinium moiety to achieve very good aqueous solubility and the inversion of an amide to prevent genotoxicity. BAY-6096 dose-dependently reduced blood pressure increases in rats induced by an α2B agonist, demonstrating the role of α2B receptors in vascular constriction in rats.


Subject(s)
Adrenergic Agents , Rats , Animals
3.
J Med Chem ; 65(24): 16420-16431, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36475653

ABSTRACT

Despite advances in the treatment of heart failure in recent years, options for patients are still limited and the disease is associated with considerable morbidity and mortality. Modulating cyclic guanosine monophosphate levels within the natriuretic peptide signaling pathway by inhibiting PDE9A has been associated with beneficial effects in preclinical heart failure models. We herein report the identification of BAY-7081, a potent, selective, and orally bioavailable PDE9A inhibitor with very good aqueous solubility starting from a high-throughput screening hit. Key aspect of the optimization was a switch in metabolism of our lead structures from glucuronidation to oxidation. The switch proved being essential for the identification of compounds with improved pharmacokinetic profiles. By studying a tool compound in a transverse aortic constriction mouse model, we were able to substantiate the relevance of PDE9A inhibition in heart diseases.


Subject(s)
Cyclic GMP , Heart Failure , Mice , Animals , Cyclic GMP/metabolism , High-Throughput Screening Assays , 3',5'-Cyclic-AMP Phosphodiesterases
SELECTION OF CITATIONS
SEARCH DETAIL
...