Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Arthritis Res Ther ; 26(1): 106, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790038

ABSTRACT

BACKGROUND: Previously, fragments from Sirtuin 1 (SIRT1) were identified in preclinical and clinical samples to display an increase in serum levels for N-terminal (NT) SIRT1 vs. C-terminal (CT) SIRT1, indicative of early signs of OA. Here we tested NT/CT SIRT1 levels as well as a novel formulated sandwich assay to simultaneously detect both domains of SIRT1 in a manner that may inform us about the levels of full-length SIRT1 in the circulation (flSIRT1) of clinical cohorts undergoing knee joint distraction (KJD). METHODS: We employed an indirect ELISA assay to test NT- and CT-SIRT1 levels and calculated their ratio. Further, to test flSIRT1 we utilized novel antibodies (Ab), which were validated for site specificity and used in a sandwich ELISA method, wherein the CT-reactive served as capture Ab, and its NT-reactive served as primary detection Ab. This method was employed in human serum samples derived from a two-year longitudinal study of KJD patients. Two-year clinical and structural outcomes were correlated with serum levels of flSIRT1 compared to baseline. RESULTS: Assessing the cohort, exhibited a significant increase of NT/CT SIRT1 serum levels with increased osteophytes and PIIANP/CTX-II at baseline, while a contradictory increase in NT/CT SIRT1 was associated with less denuded bone, post-KJD. On the other hand, flSIRT1 exhibited an upward trend in serum level, accompanied by reduced denuded bone for 2-year adjusted values. Moreover, 2 year-adjusted flSIRT1 levels displayed a steeper linear regression for cartilage and bone-related structural improvement than those observed for NT/CT SIRT1. CONCLUSIONS: Our data support that increased flSIRT1 serum levels are a potential molecular endotype for cartilage-related structural improvement post-KJD, while NT/CT SIRT1 appears to correlate with osteophyte and PIIANP/CTX-II reduction at baseline, to potentially indicate baseline OA severity.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Osteoarthritis, Knee , Sirtuin 1 , Humans , Sirtuin 1/blood , Female , Male , Middle Aged , Osteoarthritis, Knee/blood , Osteoarthritis, Knee/surgery , Adult , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Longitudinal Studies , Knee Joint/diagnostic imaging , Knee Joint/pathology , Biomarkers/blood , Aged
2.
Article in English | MEDLINE | ID: mdl-38531464

ABSTRACT

Research conducted using murine preclinical models of osteoarthritis (OA) over the last three decades has brought forth many exciting developments showcasing mechanisms and pathways that drive disease pathogenesis. These models have identified therapeutic targets that can be modulated via innovative biologicals and pharmaceuticals. However, many of these approaches have failed to translate to humans and reach the clinic. This commentary aims to highlight some of the key hurdles in the translation of novel findings using preclinical OA models with a focus on sex-related differences and variations in chondrosenescence in these animal models. Notably, besides chondrosenescence, other signaling mechanisms have been shown to be affected by sexual dimorphism (i.e. TGFß signaling, EGFR/integrin α1ß1 and Trpv4). Preclinical models of OA mainly utilize male mice due to their capacity to manifest fast progressing OA structural phenotype compared to female mice. This experimental trend has overlooked and ignored the sex-related effects of numerous mechanisms affecting joint structure, that influence OA structural progression. Future work should focus on analyzing both sexes and understanding sex-related differences, which will enable us to gain a better understanding of the progression of OA based on sex-related mechanistic discrepancies, and potentially improve translatability.

3.
Biomolecules ; 14(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38254681

ABSTRACT

Objective: Previous studies have shown that the cleavage of Sirt1 contributes to the development of osteoarthritis (OA). In fact, OA was effectively abrogated by the intra-articular (IA) administration of two compounds, one blocking Sirt1 cleavage (CA074me) and the other activating Sirt1 (SRT1720), using a post-traumatically induced model (PTOA) in young female mice. In this study, we attempted to understand if this local treatment is effective in preventing age-associated OA (AOA) progression and symptoms. Design: A group of 17-month-old female C57BL/6J mice were IA administered with CA074me and/or SRT1720 or their combination. Joint histopathological analysis and bone histomorphometry were carried out, with an assessment of knee mechanical hyperalgesia. A serum analysis for NT/CT Sirt1 was carried out along with immunohistochemistry for articular cartilage to detect p16INK4A or γH2A.X. Similarly, meniscal cartilage was monitored for Lef1 and Col1a1 deposition. The data were compared for young female mice subjected to post-traumatic OA (PTOA). Results: Similar to PTOA, combination-treated AOA exhibited improved knee hyperalgesia, yet structural improvements were undetected, corresponding to unchanged NT/CT Sirt1 serum levels. Both AOA and PTOA exhibited unchanged staining for nuclear p16INK4A or γH2A.X and lacked a correlation with OA severity. Contrarily to PTOA, the combination treatment with AOA did not exhibit a local reduction in the Lef1 and Col1 targets. Conclusions: When targeting Sirt1 cleavage, the PTOA and AOA models exhibited a similar pain response to the combination treatment; however, they displayed diverse structural outcomes for joint-related damage, related to Lef1-dependent signaling. Interestingly, nuclear p16INK4A was unaffected in both models, regardless of the treatment's effectiveness. Finally, these findings highlight the variations in the responses between two highly researched OA preclinical models, reflecting OA pathophysiology heterogeneity and variations in gender-related drug-response mechanisms.


Subject(s)
Cartilage, Articular , Osteoarthritis , Sirtuin 1 , Animals , Female , Mice , Cyclin-Dependent Kinase Inhibitor p16 , Hyperalgesia , Mice, Inbred C57BL , Osteoarthritis/drug therapy , Osteoarthritis/etiology , Sirtuin 1/drug effects
4.
Proc Natl Acad Sci U S A ; 119(21): e2116855119, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35594394

ABSTRACT

Cartilage mineralization is a tightly controlled process, imperative for skeletal growth and fracture repair. However, in osteoarthritis (OA), cartilage mineralization may impact the joint range of motion, inflict pain, and increase chances for joint effusion. Here we attempt to understand the link between inflammation and cartilage mineralization by targeting Sirtuin 1 (SIRT1) and lymphoid enhancer binding factor 1 (LEF1), both reported to have contrasting effects on cartilage. We find that inflammatory-dependent cleavage of SIRT1 or its cartilage-specific genetic ablation, directly enhanced LEF1 expression accompanied by a catabolic response. Applying a posttraumatic OA (PTOA) model to cartilage-specific Sirt1 nulls displayed severe OA, which was accompanied by synovitis, meniscal mineralization, and osteophyte formation of the lateral joint compartment. Alternatively, cartilage-specific Lef1 nulls presented reduced lateral mineralization, OA severity, and local pain. Differential gene expression analysis revealed that Lef1 ablation reduced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Toll-like receptor (Tlr) pathways, while enhancing SRY-Box transcription factor 9 (Sox9) and cartilaginous extracellular matrix genes. The results support a link between inflammation and Lef1-dependent cartilage mineralization, mediated by the inactivation of Sirt1. By ablating Lef1 in a PTOA model, the structural and pain-related phenotypes of OA were reduced, in part, by preventing cartilage mineralization of the lateral joint compartment, partially manifested by meniscal tissue mineralization. Overall, these data provide a molecular axis to link between inflammation and cartilage in a PTOA model.


Subject(s)
Calcinosis , Cartilage, Articular , Osteoarthritis , Synovitis , Calcinosis/metabolism , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Humans , Inflammation , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism , Osteoarthritis/genetics , Osteoarthritis/metabolism , Pain , Synovitis/genetics , Synovitis/pathology
5.
J Periodontal Res ; 56(3): 535-546, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33559894

ABSTRACT

OBJECTIVE: Periodontitis is one the most common chronic inflammatory conditions, resulting in destruction of tooth-supporting tissues and leading to tooth loss. Porphyromonas gingivalis activates host macrophages to secrete pro-inflammatory cytokines and elicit tissue damage, in part by inducing NF-kappa-B transactivation. Since NFκB transactivation is negatively regulated by the Nicotinamide adenine dinucleotide (NAD)-dependent deacetylase enzyme Sirt1, we sought to assess if RAW264.7 macrophages exposed to P. gingivalis demonstrate impaired Sirt1 activity, to ultimately induce a pro-inflammatory response. METHODS: RAW264.7 macrophages were incubated with heat- killed P. gingivalis for 2, 4, 8, and 24 h. Stimulated RAW264.7 were assessed for TNFα expression via PCR, ELISA, and ChIP analysis. Following the activation of RAW264.7 macrophages, immunoblot analysis was executed to detect modifications in Sirt1 and the NFκB subunit RelA that is essential for NFκB transcriptional activity. RESULTS: TNFα expression was elevated 4 h after exposure to P. gingivalis. ChIP confirmed that RelA was enriched in the mouse TNFα promoter 4 h following stimulation, which correlated with the increased TNFα mRNA levels. Preceding TNFα expression, we detected Phosphoserine 536 and acetylated lysine 310 of RelA after 2 hours exposure with P. gingivalis. Moreover, reduced Sirt1 activity was associated with its cleavage in RAW264.7 protein extracts, after 2 hours of P. gingivalis exposure. Blocking TLR2/4 signaling prevented Sirt1 cleavage, loss of deacetylase activity, and TNFα secretion, while co-administering CA074Me (a cathepsin B inhibitor) with P. gingivalis reduced RelA promoter enrichment, resulting in impaired TNFα expression. CONCLUSIONS: Together, the results suggest that P. gingivalis induces TNFα expression, at least in part, by enhancing cleavage of Sirt1 via a TLR-dependent signaling circuit.


Subject(s)
Periodontitis , Porphyromonas gingivalis , Animals , Lipopolysaccharides/pharmacology , Macrophages , Mice , NF-kappa B , Sirtuin 1 , Tumor Necrosis Factor-alpha
SELECTION OF CITATIONS
SEARCH DETAIL
...